TY - JOUR
T1 - Self-electrochemiluminescence of poly[9,9-bis(3‘-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9- dioctylfluorene)] and resonance energy transfer to aluminum tris(8-quinolinolate)
AU - Ma, Long
AU - Wu, Nan
AU - Liu, Ying
AU - Ran, Xueqin
AU - Xiao, Debao
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2019/2/20
Y1 - 2019/2/20
N2 - In this paper, the electrochemiluminescence (ECL) behavior of a hole-transport polymer, poly [9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9-dio ctylfluorene)] (PFN) was examined with the purpose of finding a novel organic ECL emitter. It was found that the PFN exhibits self-electrochemiluminescence (self-ECL) without any exogenous co-reactants. Quite different from the traditional ECL, the addition of tripropyl amine (TPA) quenched the self-ECL of PFN. PFN ECL intensity reaches a peak during electrochemical oxidation process due to the superposition of self-enhanced ECL, and aggregation quenching of excited state by PFN excimer formation. Aluminum tris(8-quinolinolate) (AlQ3) doped with PFN recovers luminescence intensity with restraining quenching effect via ECL resonance energy transfer from PFN to AlQ3, giving rise to a stable luminescence signal, and hence sensory detection of nitroaromatics. The limits of detections for nitroaromatics can reach down to a level of 10−22 M. This work sets the stage for a novel organic polymer-based ECL emitter without using any toxic exogenous co-reactant, and presents a practical avenue for a prototype of realising sensory detection through signal stabilization via energy resonance energy transfer (ERET).
AB - In this paper, the electrochemiluminescence (ECL) behavior of a hole-transport polymer, poly [9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9-dio ctylfluorene)] (PFN) was examined with the purpose of finding a novel organic ECL emitter. It was found that the PFN exhibits self-electrochemiluminescence (self-ECL) without any exogenous co-reactants. Quite different from the traditional ECL, the addition of tripropyl amine (TPA) quenched the self-ECL of PFN. PFN ECL intensity reaches a peak during electrochemical oxidation process due to the superposition of self-enhanced ECL, and aggregation quenching of excited state by PFN excimer formation. Aluminum tris(8-quinolinolate) (AlQ3) doped with PFN recovers luminescence intensity with restraining quenching effect via ECL resonance energy transfer from PFN to AlQ3, giving rise to a stable luminescence signal, and hence sensory detection of nitroaromatics. The limits of detections for nitroaromatics can reach down to a level of 10−22 M. This work sets the stage for a novel organic polymer-based ECL emitter without using any toxic exogenous co-reactant, and presents a practical avenue for a prototype of realising sensory detection through signal stabilization via energy resonance energy transfer (ERET).
KW - Resonance energy transfer
KW - Self-electrochemiluminescence
KW - Sensor
KW - poly[9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene]-alt-2,7-(9,9- dioctylfluorene)
UR - http://www.scopus.com/inward/record.url?scp=85059326455&partnerID=8YFLogxK
U2 - 10.1016/j.electacta.2018.12.046
DO - 10.1016/j.electacta.2018.12.046
M3 - 文章
AN - SCOPUS:85059326455
SN - 0013-4686
VL - 297
SP - 826
EP - 832
JO - Electrochimica Acta
JF - Electrochimica Acta
ER -