TY - JOUR
T1 - Small fatigue crack behavior of CP-Ti in thin-walled cruciform specimens under biaxial loading
AU - Chang, Le
AU - Wang, Zhuowu
AU - Xie, Hongpeng
AU - Lv, Chao
AU - Zhang, Wei
AU - Zhou, Changyu
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2025/1
Y1 - 2025/1
N2 - This study investigates the small fatigue crack propagation behavior of commercially pure titanium (CP-Ti) using thin-walled cruciform specimens under in-plane biaxial loading, considering the effects of biaxial ratio and phase angle. Increasing phase angle results in more secondary cracks merging with main cracks perpendicular to the rolling direction (RD) and transverse direction (TD), a phenomenon attributed to the rise in shear stress that accelerates main crack growth. Higher loading biaxiality or a lower phase angle leads to decreased crack propagation rates and increased biaxial fatigue life. Electron backscatter diffraction (EBSD) analysis reveals that when the maximum normal stress aligns with the RD, prismatic slip primarily governs crack propagation, thereby accelerating crack propagation rates. Conversely, alignment with the TD reduces prismatic slip activity and crack propagation rates. Under equi-biaxial loading, prismatic slip activity decreases further, and crack propagation is dominated by multiple slip and twinning, consequently resulting in the slowest propagation rates. Additionally, a higher proportion of prismatic slip under high phase angle also accelerates crack propagation. Finally, incorporating Findley equivalent stress into the Chapetti model, which considers the crack length-dependent threshold effect, a highly accurate biaxial small fatigue crack propagation rate model is proposed.
AB - This study investigates the small fatigue crack propagation behavior of commercially pure titanium (CP-Ti) using thin-walled cruciform specimens under in-plane biaxial loading, considering the effects of biaxial ratio and phase angle. Increasing phase angle results in more secondary cracks merging with main cracks perpendicular to the rolling direction (RD) and transverse direction (TD), a phenomenon attributed to the rise in shear stress that accelerates main crack growth. Higher loading biaxiality or a lower phase angle leads to decreased crack propagation rates and increased biaxial fatigue life. Electron backscatter diffraction (EBSD) analysis reveals that when the maximum normal stress aligns with the RD, prismatic slip primarily governs crack propagation, thereby accelerating crack propagation rates. Conversely, alignment with the TD reduces prismatic slip activity and crack propagation rates. Under equi-biaxial loading, prismatic slip activity decreases further, and crack propagation is dominated by multiple slip and twinning, consequently resulting in the slowest propagation rates. Additionally, a higher proportion of prismatic slip under high phase angle also accelerates crack propagation. Finally, incorporating Findley equivalent stress into the Chapetti model, which considers the crack length-dependent threshold effect, a highly accurate biaxial small fatigue crack propagation rate model is proposed.
KW - Biaxial loading
KW - CP-Ti
KW - Cruciform specimen
KW - Fatigue life prediction
KW - Small fatigue crack
UR - http://www.scopus.com/inward/record.url?scp=85207277496&partnerID=8YFLogxK
U2 - 10.1016/j.ijfatigue.2024.108662
DO - 10.1016/j.ijfatigue.2024.108662
M3 - 文章
AN - SCOPUS:85207277496
SN - 0142-1123
VL - 190
JO - International Journal of Fatigue
JF - International Journal of Fatigue
M1 - 108662
ER -