TY - JOUR
T1 - Solvent-Free Preparation of Closely Packed MoS2Nanoscrolls for Improved Photosensitivity
AU - Zhao, Ying
AU - You, Hui
AU - Li, Xinzhe
AU - Pei, Chengjie
AU - Huang, Xiao
AU - Li, Hai
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/2/23
Y1 - 2022/2/23
N2 - Due to their enhanced light absorption efficiency, one-dimensional (1D) transition metal dichalcogenide (TMDC) nanoscrolls derived from two-dimensional (2D) TMDC nanosheets have shown excellent optoelectronic properties. Currently, organic solvent and alkaline droplet-assisted scrolling methods are popular for preparing TMDC nanoscrolls. Unfortunately, the adsorption of organic solvent or alkaline impurities on TMDC is inevitable during the preparation, which affects the optoelectronic properties of TMDC. In this work, we report a solvent-free method to prepare closely packed MoS2 nanoscrolls by dragging a deionized water droplet onto the chemical vapor deposition grown monolayer MoS2 nanosheets at 100 °C (referred to as MoS2 NS-W). The as-prepared MoS2 NS-W was well characterized by optical microscopy, atomic force microscopy, and ultralow frequency (ULF) Raman spectroscopy. After high temperature annealing, the height of MoS2 nanoscrolls prepared using an ethanol droplet (referred to as MoS2 NS-E) greatly decreased, indicating the loss of encapsulated ethanol in MoS2 NS-E. While the height of MoS2 NS-W was almost unchanged under the same conditions, implying that no water was embedded in the scroll. Compared to the MoS2 NS-E, the MoS2 NS-W shows more ULF breathing mode peaks, confirming the stronger interlayer interaction. In addition, the MoS2 NS-W shows a higher Young's modulus than MoS2 NS-E, which could arise from the closely packed scroll structure. Importantly, the MoS2 NS-W device showed a photosensitivity 1 order of magnitude higher than that of the MoS2 NS-E device under blue, green, and red lasers, respectively. The decreased photosensitivity of MoS2 NS-E was attributed to the larger dark current, which might be assigned to the adsorbed ethanol between the adjacent layers in MoS2 NS-E. Our work provides a solvent-free method to prepare closely packed MoS2 nanoscrolls at large scale and demonstrates their great potential for high-performance optoelectronic devices.
AB - Due to their enhanced light absorption efficiency, one-dimensional (1D) transition metal dichalcogenide (TMDC) nanoscrolls derived from two-dimensional (2D) TMDC nanosheets have shown excellent optoelectronic properties. Currently, organic solvent and alkaline droplet-assisted scrolling methods are popular for preparing TMDC nanoscrolls. Unfortunately, the adsorption of organic solvent or alkaline impurities on TMDC is inevitable during the preparation, which affects the optoelectronic properties of TMDC. In this work, we report a solvent-free method to prepare closely packed MoS2 nanoscrolls by dragging a deionized water droplet onto the chemical vapor deposition grown monolayer MoS2 nanosheets at 100 °C (referred to as MoS2 NS-W). The as-prepared MoS2 NS-W was well characterized by optical microscopy, atomic force microscopy, and ultralow frequency (ULF) Raman spectroscopy. After high temperature annealing, the height of MoS2 nanoscrolls prepared using an ethanol droplet (referred to as MoS2 NS-E) greatly decreased, indicating the loss of encapsulated ethanol in MoS2 NS-E. While the height of MoS2 NS-W was almost unchanged under the same conditions, implying that no water was embedded in the scroll. Compared to the MoS2 NS-E, the MoS2 NS-W shows more ULF breathing mode peaks, confirming the stronger interlayer interaction. In addition, the MoS2 NS-W shows a higher Young's modulus than MoS2 NS-E, which could arise from the closely packed scroll structure. Importantly, the MoS2 NS-W device showed a photosensitivity 1 order of magnitude higher than that of the MoS2 NS-E device under blue, green, and red lasers, respectively. The decreased photosensitivity of MoS2 NS-E was attributed to the larger dark current, which might be assigned to the adsorbed ethanol between the adjacent layers in MoS2 NS-E. Our work provides a solvent-free method to prepare closely packed MoS2 nanoscrolls at large scale and demonstrates their great potential for high-performance optoelectronic devices.
KW - MoSnanoscroll
KW - closely packed structure
KW - dark current
KW - photosensitivity
KW - solvent-free
KW - water droplet
UR - http://www.scopus.com/inward/record.url?scp=85125090737&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c24291
DO - 10.1021/acsami.1c24291
M3 - 文章
C2 - 35133788
AN - SCOPUS:85125090737
SN - 1944-8244
VL - 14
SP - 9515
EP - 9524
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 7
ER -