TY - JOUR
T1 - Spherical Attapulgite/Silica Aerogels Fabricated via Different Drying Methods with Excellent Adsorption Performance
AU - Zhu, Zhixiang
AU - Wang, Shengyuan
AU - Zhong, Ya
AU - You, Qi
AU - Gao, Jun
AU - Cui, Sheng
AU - Shen, Xiaodong
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Dye wastewater has caused great harm to the environment, which is an urgent problem to be solved. As typical three-dimensional porous materials, aerogels have attracted great interest in dye wastewater treatment. In this work, spherical attapulgite/silica (ATP/SiO2) gels were initially prepared by easily scalable sol-gel dripping methods and then dried to aerogels with three drying techniques, namely, supercritical CO2 drying (SCD), freeze-drying (FD), and ambient pressure drying (APD). The effect of the drying techniques and heat-treated temperature on the physical characteristic, morphological properties, microstructure, and chemical structure of the spherical ATP/SiO2 aerogels were investigated. The macroscopic morphology of the spherical ATP/SiO2 aerogels was homogeneous and integrated without local cracking. The average pore diameter and specific surface area of the spherical ATP/SiO2 aerogels prepared by the three drying techniques were in the range of 6.8–8.6 nm and 218.5–267.4 m2/g, respectively. The heat treatment temperature had a significant effect on the pore structure and the wetting properties of the aerogels. The 600 °C heat-treated aerogels were subjected to adsorption tests in methylene blue (MB) solution (60 mg/g, 100 mL), which exhibited a great adsorption capacity of 102.50 mg/g. Therefore, the resulting spherical ATP/SiO2 aerogels possessed multipath preparation and exhibited an efficient adsorption performance, with the potential to be applied as an adsorbent for dye wastewater.
AB - Dye wastewater has caused great harm to the environment, which is an urgent problem to be solved. As typical three-dimensional porous materials, aerogels have attracted great interest in dye wastewater treatment. In this work, spherical attapulgite/silica (ATP/SiO2) gels were initially prepared by easily scalable sol-gel dripping methods and then dried to aerogels with three drying techniques, namely, supercritical CO2 drying (SCD), freeze-drying (FD), and ambient pressure drying (APD). The effect of the drying techniques and heat-treated temperature on the physical characteristic, morphological properties, microstructure, and chemical structure of the spherical ATP/SiO2 aerogels were investigated. The macroscopic morphology of the spherical ATP/SiO2 aerogels was homogeneous and integrated without local cracking. The average pore diameter and specific surface area of the spherical ATP/SiO2 aerogels prepared by the three drying techniques were in the range of 6.8–8.6 nm and 218.5–267.4 m2/g, respectively. The heat treatment temperature had a significant effect on the pore structure and the wetting properties of the aerogels. The 600 °C heat-treated aerogels were subjected to adsorption tests in methylene blue (MB) solution (60 mg/g, 100 mL), which exhibited a great adsorption capacity of 102.50 mg/g. Therefore, the resulting spherical ATP/SiO2 aerogels possessed multipath preparation and exhibited an efficient adsorption performance, with the potential to be applied as an adsorbent for dye wastewater.
KW - adsorption performance
KW - drying techniques
KW - heat treatment
KW - spherical ATP/SiO aerogels
UR - http://www.scopus.com/inward/record.url?scp=85151952631&partnerID=8YFLogxK
U2 - 10.3390/ma16062292
DO - 10.3390/ma16062292
M3 - 文章
AN - SCOPUS:85151952631
SN - 1996-1944
VL - 16
JO - Materials
JF - Materials
IS - 6
M1 - 2292
ER -