State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network

Hao Zhang, Jingyi Gao, Le Kang, Yi Zhang, Licheng Wang, Kai Wang

科研成果: 期刊稿件文章同行评审

50 引用 (Scopus)

摘要

Lithium-ion batteries (LIBs) need to maintain high energy efficiency and power level in several application scenario. Accurate state of health (SOH) forecast is essential for designing a safe and reliable battery management systems (BMS). Temporal convolutional network (TCN) is a prevailing deep learning method for estimating the SOH of lithium-ion batteries. However, the hyperparameters in the network are usually difficult to predefine, which poses a challenge for the SOH estimation accuracy in real-world. To solve this problem, this paper proposes a data-driven estimation approach, where the TCN is combined with the modified flower pollination algorithm (MFPA) to determine the network topology. After hyperparameter optimization, the external sensor raw data and identified ohmic resistances trajectories in the equivalent circuits model (ECM) are both input to the TCN model to estimate SOH of LIBs. In contrast to prior approaches for feature extraction, this method is not only conductive to improve SOH estimation accuracy, but also can reduce on-board estimation computing burden. We carry out experiments on the same type of cells from NASA public data resources. The experimental results systematically validate the superiority of the proposed method, which covers high estimation accuracy, great robustness to varied training set and satisfied universality to different batteries.

源语言英语
文章编号128742
期刊Energy
283
DOI
出版状态已出版 - 15 11月 2023

指纹

探究 'State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network' 的科研主题。它们共同构成独一无二的指纹。

引用此