TY - JOUR
T1 - Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets
AU - Zhang, Xi
AU - Alloul, Ouassima
AU - He, Qingliang
AU - Zhu, Jiahua
AU - Verde, Michael Joseph
AU - Li, Yutong
AU - Wei, Suying
AU - Guo, Zhanhu
PY - 2013/6/21
Y1 - 2013/6/21
N2 - Magnetic graphene (Gr) nanocomposites (Gr nanosheets coated with iron core iron oxide shell nanoparticles, named Gr/Fe@Fe2O3) have successfully served as nanofillers for obtaining magnetic epoxy resin polymer nanocomposites (PNCs) to be compared with the epoxy nanocomposites with pure graphene. The effects of nanofiller loading levels on the rheological behaviors, thermal stability, thermo-mechanical, tensile mechanical properties, electrical conductivity and magnetic properties were systematically studied. A reduced viscosity was observed in the 1.0 wt% Gr-epoxy resin liquid nanosuspensions and the viscosity was increased with further increasing the Gr loading. In the TGA test, although the introduction of both nanofillers caused lower onset decomposition temperature of the PNCs, the Gr/Fe@Fe2O3 was found to favor the char formation from the epoxy resin. The enhanced char residue was also observed during the flammability tests. The dynamic storage and loss modulii were studied together with the glass transition temperature (Tg) obtained from the peak of tanδ. The tensile strength observed in the PNCs with 1.0 wt% Gr/Fe@Fe2O3 is 58% higher than that of the pure epoxy, and was attributed to the high stiffness of Gr. Both nanofillers could increase the electrical conductivity of the epoxy matrix. The magnetic properties of the PNCs with Gr/Fe@Fe2O 3 are studied and the value of coercivity (Hc) is observed inversely proportional to the loading of Gr/Fe@Fe2O3 in the PNCs due to the decreased interparticle dipolar interaction, which arises from the enlarged nanoparticle spacer distance for the single domain nanoparticles. Finally, the increased real permittivity observed in the PNCs is attributed to the interfacial polarization.
AB - Magnetic graphene (Gr) nanocomposites (Gr nanosheets coated with iron core iron oxide shell nanoparticles, named Gr/Fe@Fe2O3) have successfully served as nanofillers for obtaining magnetic epoxy resin polymer nanocomposites (PNCs) to be compared with the epoxy nanocomposites with pure graphene. The effects of nanofiller loading levels on the rheological behaviors, thermal stability, thermo-mechanical, tensile mechanical properties, electrical conductivity and magnetic properties were systematically studied. A reduced viscosity was observed in the 1.0 wt% Gr-epoxy resin liquid nanosuspensions and the viscosity was increased with further increasing the Gr loading. In the TGA test, although the introduction of both nanofillers caused lower onset decomposition temperature of the PNCs, the Gr/Fe@Fe2O3 was found to favor the char formation from the epoxy resin. The enhanced char residue was also observed during the flammability tests. The dynamic storage and loss modulii were studied together with the glass transition temperature (Tg) obtained from the peak of tanδ. The tensile strength observed in the PNCs with 1.0 wt% Gr/Fe@Fe2O3 is 58% higher than that of the pure epoxy, and was attributed to the high stiffness of Gr. Both nanofillers could increase the electrical conductivity of the epoxy matrix. The magnetic properties of the PNCs with Gr/Fe@Fe2O 3 are studied and the value of coercivity (Hc) is observed inversely proportional to the loading of Gr/Fe@Fe2O3 in the PNCs due to the decreased interparticle dipolar interaction, which arises from the enlarged nanoparticle spacer distance for the single domain nanoparticles. Finally, the increased real permittivity observed in the PNCs is attributed to the interfacial polarization.
KW - Graphene nanocomposites
KW - Magnetic epoxy nanocomposites
KW - Rheological behaviors
UR - http://www.scopus.com/inward/record.url?scp=84878840216&partnerID=8YFLogxK
U2 - 10.1016/j.polymer.2013.04.062
DO - 10.1016/j.polymer.2013.04.062
M3 - 文章
AN - SCOPUS:84878840216
SN - 0032-3861
VL - 54
SP - 3594
EP - 3604
JO - Polymer
JF - Polymer
IS - 14
ER -