TY - JOUR
T1 - Structure and properties of polyurethane/polyacrylate latex interpenetrating networks hybrid emulsions
AU - Chen, Su
AU - Chen, Li
PY - 2003/12
Y1 - 2003/12
N2 - Some new kinds of novel polyurethane (PU)/polyacrylate (PA) latex interpenetrating networks (LIPNs) were synthesized. Firstly PU dispersions were synthesized by self-emulsification polymerization. Then PU/PA LIPNs using PU dispersion as the seed were prepared by soap free emulsion polymerization. The effects of different PU/PA ratios, the blending method and the NCO/OH molar ratio of PU components on PU/PA LIPNs performance were also investigated. The structure and properties of PU/PA LIPNs such as mechanical properties, particle size, morphology of the surface were characterized by dynamic mechanical analysis, scanning electron microscopy, and dynamic light scattering. It was found that PU/PA LIPNs can markedly improve the water resistance and the mechanical properties of PU latex much more than those of PU/PA physical blends due to a great deal of interpenetrating and entangling between PU and PA latex. Moreover, the particle size of PU/PA LIPNs is related to the PA content and NCO/OH molar ratio of PU components: the higher the NCO/OH molar ratio in PU dispersions, the larger is the particle size of PU/PA LIPNs, and the average particle size of PU/PA LIPNs becomes larger with an increase in PA content.
AB - Some new kinds of novel polyurethane (PU)/polyacrylate (PA) latex interpenetrating networks (LIPNs) were synthesized. Firstly PU dispersions were synthesized by self-emulsification polymerization. Then PU/PA LIPNs using PU dispersion as the seed were prepared by soap free emulsion polymerization. The effects of different PU/PA ratios, the blending method and the NCO/OH molar ratio of PU components on PU/PA LIPNs performance were also investigated. The structure and properties of PU/PA LIPNs such as mechanical properties, particle size, morphology of the surface were characterized by dynamic mechanical analysis, scanning electron microscopy, and dynamic light scattering. It was found that PU/PA LIPNs can markedly improve the water resistance and the mechanical properties of PU latex much more than those of PU/PA physical blends due to a great deal of interpenetrating and entangling between PU and PA latex. Moreover, the particle size of PU/PA LIPNs is related to the PA content and NCO/OH molar ratio of PU components: the higher the NCO/OH molar ratio in PU dispersions, the larger is the particle size of PU/PA LIPNs, and the average particle size of PU/PA LIPNs becomes larger with an increase in PA content.
KW - Emulsion polymerization
KW - LIPN
KW - Polyacrylate
KW - Polyurethane
UR - http://www.scopus.com/inward/record.url?scp=0346068368&partnerID=8YFLogxK
U2 - 10.1007/s00396-003-0863-8
DO - 10.1007/s00396-003-0863-8
M3 - 文章
AN - SCOPUS:0346068368
SN - 0303-402X
VL - 282
SP - 14
EP - 20
JO - Colloid and Polymer Science
JF - Colloid and Polymer Science
IS - 1
ER -