TY - JOUR
T1 - Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization
AU - Zhao, Jing
AU - Feng, Yakai
N1 - Publisher Copyright:
© 2020 Wiley-VCH GmbH
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
AB - Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
KW - cardiovascular devices
KW - endothelialization
KW - gene engineering
KW - hemocompatibility
KW - surface modification
UR - http://www.scopus.com/inward/record.url?scp=85089736048&partnerID=8YFLogxK
U2 - 10.1002/adhm.202000920
DO - 10.1002/adhm.202000920
M3 - 文献综述
C2 - 32833323
AN - SCOPUS:85089736048
SN - 2192-2640
VL - 9
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 18
M1 - 2000920
ER -