TY - JOUR
T1 - Surface engineering on porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes for an enhanced performance in diesel soot elimination
AU - Fang, Fan
AU - Zhao, Peng
AU - Feng, Nengjie
AU - Wan, Hui
AU - Guan, Guofeng
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11/15
Y1 - 2020/11/15
N2 - The porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes are synthesized by sol-gel method combined with electrospinning technique following the calcination, while the porous nanotubular structure can increase the utilization of active sites related to the catalytic activity in soot oxidation. In order to further improve the catalytic activity, porous La0.6Sr0.4CoO3-δ nanotubes are further treated with nitric acid to obtain a larger specific surface area in this work. The as-prepared catalysts are characterized by different techniques to study their physical and chemical properties. The soot catalytic activity is evaluated by the temperature programmed oxidation tests and the values of activation energy. Based on the characterizations and catalytic activity evaluation, the correlation between the specific surface area and catalytic activity is well revealed by the isothermal kinetic measurements. The higher specific surface area (more than 150.0 m2 g−1) contributes to a larger amount and a better dispersion of the active oxygen species, thence improving the catalytic activity of soot oxidation. As a result, porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes after nitric acid treatment for 4 h have the best activity and a good stability, with the T50 of 442 °C (5% O2) and 415 °C (5% O2 + 500 ppm NO), and the Ea of 93.6 kJ mol mol-1.
AB - The porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes are synthesized by sol-gel method combined with electrospinning technique following the calcination, while the porous nanotubular structure can increase the utilization of active sites related to the catalytic activity in soot oxidation. In order to further improve the catalytic activity, porous La0.6Sr0.4CoO3-δ nanotubes are further treated with nitric acid to obtain a larger specific surface area in this work. The as-prepared catalysts are characterized by different techniques to study their physical and chemical properties. The soot catalytic activity is evaluated by the temperature programmed oxidation tests and the values of activation energy. Based on the characterizations and catalytic activity evaluation, the correlation between the specific surface area and catalytic activity is well revealed by the isothermal kinetic measurements. The higher specific surface area (more than 150.0 m2 g−1) contributes to a larger amount and a better dispersion of the active oxygen species, thence improving the catalytic activity of soot oxidation. As a result, porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes after nitric acid treatment for 4 h have the best activity and a good stability, with the T50 of 442 °C (5% O2) and 415 °C (5% O2 + 500 ppm NO), and the Ea of 93.6 kJ mol mol-1.
KW - Electrospinning
KW - Perovskite
KW - Porous nanotubular structure
KW - Soot oxidation
KW - Specific surface area
UR - http://www.scopus.com/inward/record.url?scp=85085899159&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2020.123014
DO - 10.1016/j.jhazmat.2020.123014
M3 - 文章
C2 - 32516647
AN - SCOPUS:85085899159
SN - 0304-3894
VL - 399
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 123014
ER -