Synergistic Control of Organic Lead Chloride Perovskite Crystallization through the Precursor and Growth Substrate for High-Performance and Stable Transparent Optoelectronics

Binchen Gong, Jinquan Lei, Yue Wang, Lingfeng Chao, Qing Song, Deli Li, Mingwei An, Yang Liu, Yang Wang, Yonghua Chen

科研成果: 期刊稿件文章同行评审

摘要

Transparent optoelectronics are crucial in modern applications, advancing display technologies in smartphones and smart windows, and supporting high-speed communication systems and advanced sensors. CH3NH3PbCl3 (MAPbCl3) has garnered significant attention due to its ideal optical bandgap and outstanding optoelectronic performance. However, the fabrication of high-quality MAPbCl3 thin films faces significant challenges, primarily due to the uncontrolled nucleation process, which results in nonuniform crystallization, poor surface coverage with numerous voids, and high roughness. In this work, we utilized methylammonium acetate (MAAc) as a solvent to form the MAPbCl3 precursor. This approach not only enables the air-processed fabrication of MAPbCl3 but also produces uniform colloidal particles, which are beneficial for the formation of compact thin films. We investigated the influence of common hole transport layers (NiOx, PTAA, PEDOT:PSS) on the crystallization of MAPbCl3 films. By synergistically controlling both the precursor and the growth substrate, we significantly improved the quality of the MAPbCl3 film. The resulting photodiode, based on the high-quality MAPbCl3 film, demonstrated potential for transparent photovoltaics and exhibited excellent performance as a photodetector. Specifically, it achieved a responsivity R of 162.5 mA/W and a detectivity (D*) of 8.9 × 1012 Jones at 390 nm, with high response speed (1.37 μs rise time and 1.68 μs fall time) even under self-powered operation (0 V). Furthermore, the device was successfully integrated into an optical communication system. These results highlight the great potential of high-quality MAPbCl3 devices in transparent optoelectronic applications.

源语言英语
期刊ACS Applied Materials and Interfaces
DOI
出版状态已接受/待刊 - 2025

引用此