TY - JOUR
T1 - Synergistic Control of Organic Lead Chloride Perovskite Crystallization through the Precursor and Growth Substrate for High-Performance and Stable Transparent Optoelectronics
AU - Gong, Binchen
AU - Lei, Jinquan
AU - Wang, Yue
AU - Chao, Lingfeng
AU - Song, Qing
AU - Li, Deli
AU - An, Mingwei
AU - Liu, Yang
AU - Wang, Yang
AU - Chen, Yonghua
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - Transparent optoelectronics are crucial in modern applications, advancing display technologies in smartphones and smart windows, and supporting high-speed communication systems and advanced sensors. CH3NH3PbCl3 (MAPbCl3) has garnered significant attention due to its ideal optical bandgap and outstanding optoelectronic performance. However, the fabrication of high-quality MAPbCl3 thin films faces significant challenges, primarily due to the uncontrolled nucleation process, which results in nonuniform crystallization, poor surface coverage with numerous voids, and high roughness. In this work, we utilized methylammonium acetate (MAAc) as a solvent to form the MAPbCl3 precursor. This approach not only enables the air-processed fabrication of MAPbCl3 but also produces uniform colloidal particles, which are beneficial for the formation of compact thin films. We investigated the influence of common hole transport layers (NiOx, PTAA, PEDOT:PSS) on the crystallization of MAPbCl3 films. By synergistically controlling both the precursor and the growth substrate, we significantly improved the quality of the MAPbCl3 film. The resulting photodiode, based on the high-quality MAPbCl3 film, demonstrated potential for transparent photovoltaics and exhibited excellent performance as a photodetector. Specifically, it achieved a responsivity R of 162.5 mA/W and a detectivity (D*) of 8.9 × 1012 Jones at 390 nm, with high response speed (1.37 μs rise time and 1.68 μs fall time) even under self-powered operation (0 V). Furthermore, the device was successfully integrated into an optical communication system. These results highlight the great potential of high-quality MAPbCl3 devices in transparent optoelectronic applications.
AB - Transparent optoelectronics are crucial in modern applications, advancing display technologies in smartphones and smart windows, and supporting high-speed communication systems and advanced sensors. CH3NH3PbCl3 (MAPbCl3) has garnered significant attention due to its ideal optical bandgap and outstanding optoelectronic performance. However, the fabrication of high-quality MAPbCl3 thin films faces significant challenges, primarily due to the uncontrolled nucleation process, which results in nonuniform crystallization, poor surface coverage with numerous voids, and high roughness. In this work, we utilized methylammonium acetate (MAAc) as a solvent to form the MAPbCl3 precursor. This approach not only enables the air-processed fabrication of MAPbCl3 but also produces uniform colloidal particles, which are beneficial for the formation of compact thin films. We investigated the influence of common hole transport layers (NiOx, PTAA, PEDOT:PSS) on the crystallization of MAPbCl3 films. By synergistically controlling both the precursor and the growth substrate, we significantly improved the quality of the MAPbCl3 film. The resulting photodiode, based on the high-quality MAPbCl3 film, demonstrated potential for transparent photovoltaics and exhibited excellent performance as a photodetector. Specifically, it achieved a responsivity R of 162.5 mA/W and a detectivity (D*) of 8.9 × 1012 Jones at 390 nm, with high response speed (1.37 μs rise time and 1.68 μs fall time) even under self-powered operation (0 V). Furthermore, the device was successfully integrated into an optical communication system. These results highlight the great potential of high-quality MAPbCl3 devices in transparent optoelectronic applications.
KW - film fabrication
KW - growth substrate
KW - MAPbCl
KW - optoelectronic performance
KW - photodetector
KW - precursor
KW - transparent optoelectronics
UR - http://www.scopus.com/inward/record.url?scp=105002866276&partnerID=8YFLogxK
U2 - 10.1021/acsami.5c03992
DO - 10.1021/acsami.5c03992
M3 - 文章
AN - SCOPUS:105002866276
SN - 1944-8244
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -