Theoretical study of the mechanism for CO2 hydrogenation to methanol catalyzed by trans-RuH2(CO)(dpa)

Jinxia Zhou, Liangliang Huang, Wei Yan, Jun Li, Chang Liu, Xiaohua Lu

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

In this work, the reaction mechanism for the conversion of CO2 and H2 to methanol has been researched by density functional theory (DFT). The production of methanol from CO2 and H2 is catalyzed by a univocal bifunctional pincer-type complex trans-RuH2(CO)(dpa) (dpa = bis-(2-diphenylphosphinoethyl)amine). The reaction mechanism includes three continuous catalytic processes: (1) CO2 is converted to formic acid; (2) formic acid is converted to formaldehyde and water; (3) formaldehyde is converted to methanol. By computing the catalytic processes, we have shown that the rate-limiting step in the whole process is the direct cleavage of H2. The calculated largest free energy barrier is 21.6 kcal/mol. However, with the help of water, the free energy barrier can be lowered to 12.7 kcal/mol, which suggests viability of trans-RuH2(CO)(dpa) as a catalyst for the direct conversion of CO2 and H2 to methanol.

源语言英语
文章编号244
期刊Catalysts
8
6
DOI
出版状态已出版 - 11 6月 2018

指纹

探究 'Theoretical study of the mechanism for CO2 hydrogenation to methanol catalyzed by trans-RuH2(CO)(dpa)' 的科研主题。它们共同构成独一无二的指纹。

引用此