TY - JOUR
T1 - Triazole-based COF tightly hugging ionic liquids through interactions of hydrogen bonds for enhanced atmospheric CO2 conversion
AU - Xue, Qingyuan
AU - Wang, Peiru
AU - Cheng, Linyan
AU - Wei, Yibin
AU - Wang, Yuchao
AU - Lin, Jiale
AU - Zhang, Zihao
AU - Fang, Cheng
AU - Li, Hongping
AU - Ding, Jing
AU - Wan, Hui
AU - Guan, Guofeng
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/1
Y1 - 2025/1/1
N2 - In the conversion of CO2 into green chemicals, efficient catalysts are urgently needed. Composite catalysts with ionic liquids (ILs) fixed to covalent organic frames (COFs) are considered as ideal materials. However, synthesizing composite materials by modifying ionic liquids on covalent organic frameworks encountered challenges related to the modification process and the easy detachment of functional groups. In this paper, a variety of multifunctional components were combined into composites to tailor catalysts ([TMGVBr]x@COFs) for cycloaddition reaction under mild atmospheric CO2 condition. In the strategy of in-situ encapsulation, triazole-based COF (TT-COF) tightly “hugged” the ionic liquids ([TMGH+][-O2MVIm+][Br-]) through the inductions of hydrogen bonds, resulting in excellent stability. Moreover, owing to the synergy between [TMGH+][-O2MVIm+][Br-] and TT-COF, [TMGVBr]10@COF achieved a good catalytic activity with 96.3 % yield in the cycloaddition reactions under atmospheric CO2, 100 °C and 10 h. Furthermore, the strong hydrogen bonds between ionic liquids and the framework of TT-COF ensured the [TMGVBr]10@COF catalyst's good catalytic stability. There, a new idea was proposed for the efficient conversion atmospheric CO2 using designed heterogeneous catalysts.
AB - In the conversion of CO2 into green chemicals, efficient catalysts are urgently needed. Composite catalysts with ionic liquids (ILs) fixed to covalent organic frames (COFs) are considered as ideal materials. However, synthesizing composite materials by modifying ionic liquids on covalent organic frameworks encountered challenges related to the modification process and the easy detachment of functional groups. In this paper, a variety of multifunctional components were combined into composites to tailor catalysts ([TMGVBr]x@COFs) for cycloaddition reaction under mild atmospheric CO2 condition. In the strategy of in-situ encapsulation, triazole-based COF (TT-COF) tightly “hugged” the ionic liquids ([TMGH+][-O2MVIm+][Br-]) through the inductions of hydrogen bonds, resulting in excellent stability. Moreover, owing to the synergy between [TMGH+][-O2MVIm+][Br-] and TT-COF, [TMGVBr]10@COF achieved a good catalytic activity with 96.3 % yield in the cycloaddition reactions under atmospheric CO2, 100 °C and 10 h. Furthermore, the strong hydrogen bonds between ionic liquids and the framework of TT-COF ensured the [TMGVBr]10@COF catalyst's good catalytic stability. There, a new idea was proposed for the efficient conversion atmospheric CO2 using designed heterogeneous catalysts.
KW - Atmospheric CO cycloaddition
KW - Dual-functionalized ionic liquids
KW - Host–guest cooperation
KW - Hydrogen bond
KW - Triazole-based covalent organic framework
UR - http://www.scopus.com/inward/record.url?scp=85194958485&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2024.128175
DO - 10.1016/j.seppur.2024.128175
M3 - 文章
AN - SCOPUS:85194958485
SN - 1383-5866
VL - 352
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 128175
ER -