摘要
Simultaneous manipulation of topological and chemical structures to induce ionic nanochannel formation within solid electrolytes is a crucial but challenging task for the rational design of high-performance electrochemical devices including proton exchange membrane fuel cell. Herein, a novel generic approach is presented for the construction of tunable ion-conducting nanochannels via direct assembly of graphene oxide (GO)/poly(phosphonic acid) core-shell nanosheets prepared by surface-initiated precipitation polymerization. Using this simple and rapid approach to engineer GO/polymer nanosheets at the molecular-level, ordered and continuous nanochannels with interconnected hydrogen-bonded networks having a favorable water environment can be created. The resulting membranes exhibit proton conductivities up to 32 mS cm-1 at 51% relative humidity, surpassing state-of-the-art Nafion membrane and all previously reported GO-based materials. A novel approach to construct tunable nanochannels via direct assembly of graphene oxide/polymer core-shell nanosheets is developed. Through molecular-level engineering of the nanosheets, ordered and continuous nanochannels with well-tailored chemical structures can be created. The resulting membrane exhibits a proton conductivity of 32 mS cm-1 at 51% RH, surpassing state-of-the-art Nafion membrane and all previously reported GO-based materials.
源语言 | 英语 |
---|---|
页(从-至) | 7502-7511 |
页数 | 10 |
期刊 | Advanced Functional Materials |
卷 | 25 |
期 | 48 |
DOI | |
出版状态 | 已出版 - 22 12月 2015 |
已对外发布 | 是 |