Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces

Qiaojuan Wang, Yating Gao, Chantsalmaa Tumurbaatar, Tungalagtamir Bold, Fei Wei, Yihu Dai, Yanhui Yang

科研成果: 期刊稿件文章同行评审

35 引用 (Scopus)

摘要

Carbonate-modified metal-support interfaces allow Ru/MnCO3 catalyst to exhibit over 99% selectivity, great specific activity and long-term anti-CO poisoning stability in atmospheric CO2 methanation. As a contrast, Ru/MnO catalyst with metal-oxide interfaces prefers reverse water–gas shift rather than methanation route, along with a remarkably lower activity and a less than 15% CH4 selectivity. The carbonate-modified interfaces are found to stabilize the Ru species and activate CO2 and H2 molecules. Ru-CO* species are identified as the reaction intermediates steadily formed from CO2 dissociation, which show moderate adsorption strength and high reactivity in further hydrogenation to CH4. Furthermore, carbonates of Ru/MnCO3 are found to be consumed by hydrogenation to form CH4 and replenished by exchange with CO2, which are in a dynamic equilibrium during the reaction. Modification with surface carbonates is proved as an efficient strategy to endow metal-support interfaces of Ru-based catalysts with unique catalytic functions for selective CO2 hydrogenation.

源语言英语
页(从-至)38-46
页数9
期刊Journal of Energy Chemistry
64
DOI
出版状态已出版 - 1月 2022

指纹

探究 'Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces' 的科研主题。它们共同构成独一无二的指纹。

引用此