TY - JOUR
T1 - Two-photon absorption properties of chromophores of a few fluorescent proteins
T2 - A theoretical investigation
AU - Ye, Chuan Xiang
AU - Ma, Hui Li
AU - Liang, Wan Zhen
N1 - Publisher Copyright:
©Editorial office of Acta Physico-Chimica Sinica.
PY - 2016/1/13
Y1 - 2016/1/13
N2 - The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins (FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reveal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure–property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and Tag RFP. Both the pure electronic and vibrationally-resolved TPA spectra have been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of vibronic spectra can be well produced when the Franck- Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0 to S1 for two anionic chromophores, leading to a blue-shift of the TPA maximum relative to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfer character of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.
AB - The experimentally-measured two-photon absorption (TPA) spectra of fluorescent proteins (FPs) show quite different characteristics with one-photon absorption (OPA) spectra in both the low- and high-frequency regions. To reveal the mechanism that results in the discrepancies between OPA and TPA spectra, and to obtain the fundamental structure–property relationships of FPs, here we conduct a theoretical study of OPA and TPA properties of three FP chromophores, including a neutral chromophore in enhanced cyan fluorescent protein (ECFP) and two anionic FP chromophores in DsRed2 and Tag RFP. Both the pure electronic and vibrationally-resolved TPA spectra have been calculated. The calculated spectra were found to be highly dependent on the density functional theory exchange-correlation functional used. The experimental spectral lineshapes of vibronic spectra can be well produced when the Franck- Condon (FC) scattering and Herzberg-Teller (HT) vibronic coupling effects were taken into account and the structure parameters produced by CAM-B3LYP were applied in the theoretical calculations. The HT effects affect the low-frequency absorption bands corresponding to the electronic transition from S0 to S1 for two anionic chromophores, leading to a blue-shift of the TPA maximum relative to OPA maximum, while the HT effect is insignificant in the higher-frequency region of the TPA spectra. The intramolecular charge-transfer character of higher-lying excited states explains why the TPA spectra in the higher-frequency region are much stronger than those in the low-frequency region.
KW - Fluorescent protein chromophore
KW - Time-dependent density functional theory
KW - Two-photon absorption
KW - Vibronic spectrum
UR - http://www.scopus.com/inward/record.url?scp=84954413227&partnerID=8YFLogxK
U2 - 10.3866/PKU.WHXB201512112
DO - 10.3866/PKU.WHXB201512112
M3 - 文章
AN - SCOPUS:84954413227
SN - 1000-6818
VL - 32
SP - 301
EP - 312
JO - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
JF - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
IS - 1
ER -