摘要
Synaptic Zn2+ plays an important role in neurotransmission and a neuromodulator. The development of the imaging tools for monitoring spatiotemporal changes taking place in synaptic Zn2+ concentrations is necessary in order to understand the role of Zn2+ in the function of many aspects of the glutamate system. In this work, two-photon probes 1 and 2, bearing ifenprodil-like tails that have affinity for NMDA receptors of neuronal cells, were designed and prepared. The two-photon fluorescent probe 1, which bears (N-(6-acetylnaphthalen-2-yl)-N-methylglycine) as two-photon fluorophore, enables high resolution imaging of neuronal cells. The two-photon fluorescent probe 2, which contains the di-2-picolylamine (DPA) as a Zn2+-binding site, the naphthalimide unit as the two-photon fluorophore, and the ifenprodil-like tail as the NMDA receptor binding moiety, can be employed for selective detection of Zn2+ located near the NMDA receptor and for monitoring concentration changes of Zn2+ in live neurons and hippocampal tissues.
源语言 | 英语 |
---|---|
页(从-至) | 770-779 |
页数 | 10 |
期刊 | Biosensors and Bioelectronics |
卷 | 91 |
DOI | |
出版状态 | 已出版 - 15 5月 2017 |