TY - JOUR
T1 - Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit
AU - Qian, Jun
AU - Jiang, Sai
AU - Wang, Qijing
AU - Zheng, Shushu
AU - Guo, Shuya
AU - Yi, Chang
AU - Wang, Jianpu
AU - Wang, Xinran
AU - Tsukagoshi, Kazuhito
AU - Shi, Yi
AU - Li, Yun
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Piezoelectric response of P(VDF-TrFE), which is modulated by the dipole density due to the polarization switching on applying an electric field, allows it act as the fundamental components for electromechanical systems. As proposed since the 1970s, its polar α-phase is supposed to yield an enhanced piezoelectric activity. However, its experimental verification has never been reported, hampered by a substantial challenge for the achievement of a smooth, neat α-phase film. Here, we prepare ultrathin crystalline α-phase P(VDF-TrFE) films on the AlOx/Al-coated SiO2/Si substrates via a solution-based approach at room temperature. Thus, we unveil the piezoelectric nature of the polar α-phase P(VDF-TrFE) at a quasi-two-dimensional limit. The obtained values of the relative morphological deformation, the local effective piezoelectric coefficient, and the electric field-induced strain reach up to 37 pm, -46.4 pm V-1, and 4.1%, respectively. Such a robust piezoelectric response is even higher than that of the β-phase. Besides, the evolution of piezoelectricity, which is related to the piezoelectric properties of two polarization states, is also studied. Our work can enable the exploration of the prospective applications of polar α-phase P(VDF-TrFE) films.
AB - Piezoelectric response of P(VDF-TrFE), which is modulated by the dipole density due to the polarization switching on applying an electric field, allows it act as the fundamental components for electromechanical systems. As proposed since the 1970s, its polar α-phase is supposed to yield an enhanced piezoelectric activity. However, its experimental verification has never been reported, hampered by a substantial challenge for the achievement of a smooth, neat α-phase film. Here, we prepare ultrathin crystalline α-phase P(VDF-TrFE) films on the AlOx/Al-coated SiO2/Si substrates via a solution-based approach at room temperature. Thus, we unveil the piezoelectric nature of the polar α-phase P(VDF-TrFE) at a quasi-two-dimensional limit. The obtained values of the relative morphological deformation, the local effective piezoelectric coefficient, and the electric field-induced strain reach up to 37 pm, -46.4 pm V-1, and 4.1%, respectively. Such a robust piezoelectric response is even higher than that of the β-phase. Besides, the evolution of piezoelectricity, which is related to the piezoelectric properties of two polarization states, is also studied. Our work can enable the exploration of the prospective applications of polar α-phase P(VDF-TrFE) films.
UR - http://www.scopus.com/inward/record.url?scp=85040468296&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-18845-2
DO - 10.1038/s41598-017-18845-2
M3 - 文章
C2 - 29323334
AN - SCOPUS:85040468296
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 532
ER -