UV-initiated polymerization of acid- and alkali-resistant cationic flocculant P(AM-MAPTAC): Synthesis, characterization, and application in sludge dewatering

Xiang Li, Huaili Zheng, Baoyu Gao, Chun Zhao, Yongjun Sun

科研成果: 期刊稿件文章同行评审

57 引用 (Scopus)

摘要

Cationic polyacrylamide (CPAM) has been the focus of research in environmental engineering field, particularly in sludge dewatering. However, poor stability of the existing cationic polyacrylamide has limited its application. In the face of the current complex sewage/sludge environment, CPAM with high efficiency, good stability and economy is remarkably desired in this field. In this study, a CPAM (PAMA) with high acid and alkali resistance was synthesized through copolymerization of acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) under ultraviolet (UV) radiation. The structure, morphology as well as the thermal decomposition property were analyzed through instrumental analysis. Furthermore, influencing factors of the copolymerization reaction were investigated and discussed in detail. The dewatering performance of PAMA was also evaluated by measuring the supernatant residual turbidity (RT), moisture content of the filter cake (FCMC), and specific resistance to filtration of the sludge (SRF). The RT, FCMC, and SRF reached 4.70 NTU, 71%, and 3.94 (1012 m Kg−1), respectively, at 40 mg L−1 of PAMA-25-15.1 and pH of 6.0. Furthermore, these indices did not increase with the pH changes of the original sludge, and which indicated a high acid and alkali resistance of PAMA.

源语言英语
页(从-至)244-254
页数11
期刊Separation and Purification Technology
187
DOI
出版状态已出版 - 2017

指纹

探究 'UV-initiated polymerization of acid- and alkali-resistant cationic flocculant P(AM-MAPTAC): Synthesis, characterization, and application in sludge dewatering' 的科研主题。它们共同构成独一无二的指纹。

引用此