摘要
Regulating the secretion and endothelial differentiation of human mesenchymal stem cells (hMSCs) plays an important role in the vascularization in tissue engineering and regenerative medicine. In this study, a recombinant cadherin fusion protein consisting of a human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) was developed as a bioartificial matrix for modulating hMSCs. The hVE-cad-Fc matrix significantly enhanced the secretion of angiogenic factors, activated the VE-cadherin-VEGFR2/FAK-AKT/PI3K signaling pathway in hMSCs, and promoted the endothelial differentiation of hMSCs even without extra VEGF. Furthermore, the hVE-cad-Fc matrix was applied for the surface modification of a poly (lactic-co-glycolic acid) (PLGA) porous scaffold, which significantly improved the hemocompatibility and vascularization of the PLGA scaffoldin vivo. These results revealed that the hVE-cad-Fc matrix should be a superior bioartificial ECM for remodeling the pro-vascularization extracellular microenvironment by regulating the secretion of hMSCs, and showed great potential for the vascularization in tissue engineering.
源语言 | 英语 |
---|---|
页(从-至) | 3357-3370 |
页数 | 14 |
期刊 | Journal of Materials Chemistry B |
卷 | 9 |
期 | 15 |
DOI | |
出版状态 | 已出版 - 21 4月 2021 |