TY - JOUR
T1 - Zinc Chloride-Doped g-C3N4 Microtubes for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride
AU - Ye, Xiao Yu
AU - Qi, Yu Ling
AU - Cheng, Ying
AU - Wang, Qiang
AU - Han, Guo Zhi
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025/1/28
Y1 - 2025/1/28
N2 - Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-C3N4). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-C3N4 (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The doping of Zn/Cl narrowed the bandgap width of the hollow microtubular g-C3N4, as well as the inhibiting recombination of photogenerated electron and holes. Compared with the pure g-C3N4 microtube, Zn-HT-CN showed excellent catalytic performance for the photodegradation of tetracycline hydrochloride (TCH) under irradiation of visible light. The photodegradation rate of TCH reached 94.41% in 40 min, which was about two times as high as that catalyzed by the pure g-C3N4 microtube. Moreover, it was also superior to the g-C3N4 microtube doped with other typical metal elements. In addition, Zn-HT-CN showed good tolerance to environmental pH, and the catalytic efficiency of the material remained at 78.78% after five cycles.
AB - Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-C3N4). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-C3N4 (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The doping of Zn/Cl narrowed the bandgap width of the hollow microtubular g-C3N4, as well as the inhibiting recombination of photogenerated electron and holes. Compared with the pure g-C3N4 microtube, Zn-HT-CN showed excellent catalytic performance for the photodegradation of tetracycline hydrochloride (TCH) under irradiation of visible light. The photodegradation rate of TCH reached 94.41% in 40 min, which was about two times as high as that catalyzed by the pure g-C3N4 microtube. Moreover, it was also superior to the g-C3N4 microtube doped with other typical metal elements. In addition, Zn-HT-CN showed good tolerance to environmental pH, and the catalytic efficiency of the material remained at 78.78% after five cycles.
UR - http://www.scopus.com/inward/record.url?scp=85215097887&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.4c03912
DO - 10.1021/acs.langmuir.4c03912
M3 - 文章
AN - SCOPUS:85215097887
SN - 0743-7463
VL - 41
SP - 1684
EP - 1693
JO - Langmuir
JF - Langmuir
IS - 3
ER -