摘要
Effective and affordable photocatalysts play an important role in the cost reduction of solar hydrogen production through photocatalytic water splitting. In this research, a Zn2+ and Ni2+ modified carbon hydrogen evolution cocatalyst (ZnNi-C) were synthesized and immobilized onto the surface of CdS (CdS@ZnNi-C) for photocatalytic hydrogen evolution (PHE). The preparation used an ethylenediaminetetraacetic acid disodium (EDTA)-assisted method. The hydrogen evolution rate and apparent quantum efficiency (AQE) at 420 nm for an optimized CdS@ZnNi-C photocatalyst are15.7 mmol/h/g and 31.4 %, respectively. The rate is 2.4 times and 3.7 times greater than those of Zn2+ and Ni2+ modified carbon cocatalysts (Zn-C) and (Ni-C) on CdS (CdS@Zn-C) and (CdS@Ni-C), respectively. Density functional theory calculations indicate that the elevated catalytic performance of CdS@ZnNi-C is due to the co-anchored Zn2+ and Ni2+ in carbon layers that lead to a favorable Gibbs free energy (ΔGH*) for hydrogen evolution. This approach is valuable for the design of stable and efficient photocatalysts for renewable hydrogen production.
源语言 | 英语 |
---|---|
页(从-至) | 72-82 |
页数 | 11 |
期刊 | Journal of Colloid and Interface Science |
卷 | 635 |
DOI | |
出版状态 | 已出版 - 4月 2023 |