Abstract
Synthetic dye pollution is a worldwide problem and quick remedies are urgently needed. Photocatalysis is a promising method to solve this problem and carbon nanotubes (CNTs) are promising components in producing high-performance composite photocatalysts. Nevertheless, the strong hydrophobicity dramatically impedes its application in aqueous environments. In this study, hydrophilic CNT-hybrid metal oxides (ZnO and TiO2) membranes were prepared by atomic layer deposition (ALD). We demonstrate that ALD is an efficient and flexible method to enhance the photocatalytic activity of CNT-based membranes, especially the membranes used in wastewater treatments. The hybrid hexagonal wurtzite ZnO and anatase TiO2 on CNTs after calcination could effectively enhance electron transfer and reduce photo-generated electron-holes recombination. The membranes exhibit preferable photocatalytic activity and stable reusability in dye degradation. This strategy of “ALD on CNTs” is expected to create other CNT-based membranes with additional functionalities and has bright prospect for wastewater treatments.
Original language | English |
---|---|
Pages (from-to) | 39-46 |
Number of pages | 8 |
Journal | Composites Communications |
Volume | 12 |
DOIs | |
State | Published - Apr 2019 |
Keywords
- Atomic layer deposition
- Carbon nanotubes
- Hybrid metal oxides
- Photocatalytic degradation