Control of zeolite framework flexibility for ultra-selective carbon dioxide separation

Peng Du, Yuting Zhang, Xuerui Wang, Stefano Canossa, Zhou Hong, Gwilherm Nénert, Wanqin Jin, Xuehong Gu

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Molecular sieving membranes with uniform pore size are highly desired for carbon dioxide separation. All-silica zeolite membranes feature well-defined micropores, but the size-exclusion effect is significantly compromised by the non-selective macro-pores generated during detemplation. Here we propose a template modulated crystal transition (TMCT) approach to tune the flexibility of Decadodecasil 3 R (DD3R) zeolite to prepare ultra-selective membranes for CO2/CH4 separation. An instantaneous overheating is applied to synchronize the template decomposition with the structure relaxation. The organic template molecules are transitionally converted to tight carbon species by the one-minute overheating at 700 °C, which are facilely burnt out by a following moderate thermal treatment. The resulting membranes exhibit CO2/CH4 selectivity of 157~1,172 and CO2 permeance of (890~1,540) × 10−10mol m−2 s−1 Pa−1. The CO2 flux and CO2/CH4 mixture selectivity reach 3.6 Nm3 m−2 h−1 and 43 even at feed pressure up to 31 bar. Such strategy could pave the way of all-silica zeolite membranes to practical applications.

Original languageEnglish
Article number1427
JournalNature Communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Control of zeolite framework flexibility for ultra-selective carbon dioxide separation'. Together they form a unique fingerprint.

Cite this