TY - JOUR
T1 - Derivation of the predicted no-effect concentration for organophosphate esters and the associated ecological risk in surface water in China
AU - Xing, Liqun
AU - Wang, Lichao
AU - Xu, Bin
AU - Li, Aimin
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Organophosphate esters (OPEs), as re-emerging contaminants considered to be a potential health concern, are ubiquitous in the environment and have been widely investigated. However, little is known on the safe OPE concentrations in the water quality criteria for the protection of the aquatic environment, which is an indispensable part of environmental management. In the present study, aquatic acute and chronic predicted no-effect concentrations (PNECs) of six frequently detected OPEs were derived from the hazardous concentrations for 5% of species (HC5s), respectively. The acute PNECs for the selected OPEs ranged from 17.70 to 3562 μg/L, while the chronic PNECs ranged from 4.6 × 10−4 to 61.85 μg/L. Among these OPEs, tricresyl phosphate (TCrP) exhibited the lowest acute PNEC, while tris(1,3-dichloro-2-propyl) phosphate (TDCPP) presented chronic PNEC, which indicated that it has a higher toxicity effect on the aquatic environment. Furthermore, the aquatic ecological risks of individual OPEs (except for TDCPP) were deemed to be relatively low in Chinese surface water; however, the aquatic ecological risks of TDCPP and ΣOPEs indicated that they have potential adverse effects and should be considered as a potential health concern. The probability of 5% of aquatic organisms being affected by ΣOPEs was in the range of 0.21 to 17.39% based on the joint probability curve method.
AB - Organophosphate esters (OPEs), as re-emerging contaminants considered to be a potential health concern, are ubiquitous in the environment and have been widely investigated. However, little is known on the safe OPE concentrations in the water quality criteria for the protection of the aquatic environment, which is an indispensable part of environmental management. In the present study, aquatic acute and chronic predicted no-effect concentrations (PNECs) of six frequently detected OPEs were derived from the hazardous concentrations for 5% of species (HC5s), respectively. The acute PNECs for the selected OPEs ranged from 17.70 to 3562 μg/L, while the chronic PNECs ranged from 4.6 × 10−4 to 61.85 μg/L. Among these OPEs, tricresyl phosphate (TCrP) exhibited the lowest acute PNEC, while tris(1,3-dichloro-2-propyl) phosphate (TDCPP) presented chronic PNEC, which indicated that it has a higher toxicity effect on the aquatic environment. Furthermore, the aquatic ecological risks of individual OPEs (except for TDCPP) were deemed to be relatively low in Chinese surface water; however, the aquatic ecological risks of TDCPP and ΣOPEs indicated that they have potential adverse effects and should be considered as a potential health concern. The probability of 5% of aquatic organisms being affected by ΣOPEs was in the range of 0.21 to 17.39% based on the joint probability curve method.
KW - Joint probability
KW - Organophosphate esters
KW - PNEC
KW - Species sensitivity distribution
UR - http://www.scopus.com/inward/record.url?scp=85065981112&partnerID=8YFLogxK
U2 - 10.1007/s11356-019-05236-5
DO - 10.1007/s11356-019-05236-5
M3 - 文章
C2 - 31089997
AN - SCOPUS:85065981112
SN - 0944-1344
VL - 26
SP - 19795
EP - 19803
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 19
ER -