Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells

Xiaochen Wang, Yuechen Li, Jianfeng Li, Yuan Zhang, Jinjun Shao, Yongfang Li

Research output: Contribution to journalReview articlepeer-review

5 Scopus citations

Abstract

In recent years, small molecular acceptors (SMAs) have extensively promoted the progress of organic solar cells (OSCs). The facile tuning of chemical structures affords SMAs excellent tunability of their absorption and energy levels, and it gives SMA-based OSCs slight energy loss, enabling OSCs to achieve high power conversion efficiencies (e.g., >18%). However, SMAs always suffer complicated chemical structures requiring multiple-step synthesis and cumbersome purification, which is unfavorable to the large-scale production of SMAs and OSC devices for industrialization. Direct arylation coupling reaction via aromatic C-H bonds activation allows for the synthesis of SMAs under mild conditions, and it simultaneously reduces synthetic steps, synthetic difficulty, and toxic by-products. This review provides an overview of the progress of SMA synthesis through direct arylation and summarizes the typical reaction conditions to highlight the field’s challenges. Significantly, the impacts of direct arylation conditions on reaction activity and reaction yield of the different reactants’ structures are discussed and highlighted. This review gives a comprehensive view of preparing SMAs by direct arylation reactions to cause attention to the facile and low-cost synthesis of photovoltaic materials for OSCs.

Original languageEnglish
Article number3515
JournalMolecules
Volume28
Issue number8
DOIs
StatePublished - Apr 2023

Keywords

  • C-H bond activation
  • direct arylation
  • organic solar cells (OSCs)
  • small molecular acceptors (SMAs)

Fingerprint

Dive into the research topics of 'Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells'. Together they form a unique fingerprint.

Cite this