Divalent carbon(O) chemistry, part 2: Protonation and complexes with main group and transition metal lewis acids

Ralf Tonner, Gemot Frenking

Research output: Contribution to journalArticlepeer-review

259 Scopus citations

Abstract

Quantum-chemical calculations with DFT (BP86) and ab initio methods (MP2, SCS-MP2) were carried out for protonated and diprotonated compounds N-H + and N-(H+)2 and for the complexes N-BH 3, N-(BH3)2, N-CO2, N-(CO 2)2, N-W(CO)5, N-Ni(CO)3 and N-Ni(CO)2 where N = C(PH3), (1), C(PMe3) 2 (2), C(PPh3)2 (3), C-(PPh3)(CO) (4), C(CO)2 (5), C-(NHCH)2 (6), C(NHCMe) 2 (7) (Me2N)2C=C=C(NMe2)2 (8) and NHC (9) (NHCH = N-heterocyclic carbene, NHC Me=N-substituted N-heterocyclic carbene). Compounds 1-4 and 6-9 are very strong electron donors, and this is manifested in calculated protonation energies that reach values of up to 300 kcal mol-1 for 7 and in very high bond strengths of the donor-acceptor complexes. The electronic structure of the compounds was analyzed with charge- and energy-partitioning methods. The calculations show that the experimentally known compounds 2-5 and 8 chemically behave like molecules L2C which have two L → C donor-acceptor bonds and a carbon atom with two electron lone pairs. The behavior is not directly obvious when the linear structures of carbon suboxide and tetraaminoallenes are considered. They only come to the fore on reaction with strong electron-pair acceptors. The calculations predict that single and double protonation of 5 and 8 take place at the central carbon atom, where the negative charge increases upon subsequent protonation. The hitherto experimentally unknown carbodicarbenes 6 and 7 are predicted to be even stronger Lewis bases than the carbodiphosphoranes 1-3.

Original languageEnglish
Pages (from-to)3273-3289
Number of pages17
JournalChemistry - A European Journal
Volume14
Issue number11
DOIs
StatePublished - 7 Apr 2008
Externally publishedYes

Keywords

  • Bonding analysis
  • Carbon
  • Density functional calculations
  • Donor-acceptor systems
  • Protonation

Fingerprint

Dive into the research topics of 'Divalent carbon(O) chemistry, part 2: Protonation and complexes with main group and transition metal lewis acids'. Together they form a unique fingerprint.

Cite this