Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor

Zihao Zhang, Hao Chen, Changxue Wang, Kequan Chen, Xiuyang Lu, Pingkai Ouyang, Jie Fu

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

In this work, a series of ZrO2-supported Cu, Ni and bimetallic Cu-Ni catalysts were synthesized and evaluated for their activity and stability in the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. High-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR) characterizations revealed that the as-synthesized Cu-Ni/ZrO2 was a Cu-Ni alloy that was highly dispersed on mixed m-ZrO2 and t-ZrO2. The bimetallic Cu-Ni/ZrO2 nanostructures not only exhibited better catalytic activity for the conversion of oleic acid compared to monometallic Cu/ZrO2 and Ni/ZrO2 catalysts but also demonstrated good reuse performance. The formation of the Cu-Ni alloy facilitated the decarboxylation reaction and inhibited the cracking reaction, leading to enhanced catalytic performance. The good stability of Cu-Ni/ZrO2 was primarily due to the good hydrothermal stability of the ZrO2 support.

Original languageEnglish
Pages (from-to)211-217
Number of pages7
JournalFuel
Volume230
DOIs
StatePublished - 15 Oct 2018

Keywords

  • Copper-nickel alloy
  • In situ hydrogenation and deoxygenation
  • Methanol
  • Oleic acid
  • ZrO

Fingerprint

Dive into the research topics of 'Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor'. Together they form a unique fingerprint.

Cite this