Abstract
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi 0.5Sb 1.5Te 3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ∼40 nm were successfully near-monodispersed at grain boundaries of Bi 0.5Sb 1.5Te 3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520 K compared with a Bi 0.5Sb 1.5Te 3 reference sample. The peak ZT of 1.35 was achieved at 400 K for 0.1 wt.% Cu-decorated Bi 0.5Sb 1.5Te 3.
Original language | English |
---|---|
Pages (from-to) | 1165-1169 |
Number of pages | 5 |
Journal | Journal of Electronic Materials |
Volume | 41 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2012 |
Externally published | Yes |
Keywords
- Bi Sb Te
- Nanoinclusions
- lattice thermal conductivity
- metal acetate
- thermoelectric