Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries

Xianhua Hou, Jiyun Wang, Miao Zhang, Xiang Liu, Zongping Shao, Weishan Li, Shejun Hu

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

A silicon monoxide/carbon nanofibers/graphite (SiO@CNFs&G) composite with outstanding electrochemistry performance has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; carbon nanofibers intertwined with carbon coated silicon monoxide spherical composites and embedded micron-sized graphite. The combination of twisted carbon nanofibers, graphite and amorphous carbon-coating layer accommodates the large volume change of silicon during the lithium intercalation/extraction process, which stabilizes electrode structure during discharge-charge cycles. As an anode material, the as-obtained SiO@CNFs&G composite demonstrates high capacity and excellent cycle stability. An initial specific discharge capacity of approximately 1031.7 mA h g-1 with a coulombic efficiency of 56.6% and a reversible specific capacity of approximately 615.1 mA h g-1 after 100 cycles at a constant density of 100 mA g-1 is achieved, which is about two times the values for graphite. Because of the facile synthesis process and fascinating performance of the prepared electrode, significant commercial potential is expected. This journal is

Original languageEnglish
Pages (from-to)34615-34622
Number of pages8
JournalRSC Advances
Volume4
Issue number65
DOIs
StatePublished - 2014

Fingerprint

Dive into the research topics of 'Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries'. Together they form a unique fingerprint.

Cite this