Abstract
TaS2 nanolayers with reduced dimensionality show interesting physics, such as a gate-tunable phase transition and enhanced superconductivity, among others. Here, a solution-based strategy to fabricate a large-area foil of hybrid TaS2/organic superlattice, where [TaS2] monolayers and organic molecules alternatively stack in atomic scale, is proposed. The [TaS2] layers are spatially isolated with remarkably weakened interlayer bonding, resulting in lattice vibration close to that of TaS2 monolayers. The foil also shows excellent mechanical flexibility together with a large electrical conductivity of 1.2 × 103 S cm−1 and an electromagnetic interference of 31 dB, among the highest values for solution-processed thin films of graphene and inorganic graphene analogs. The solution-based strategy reported herein can add a new dimension to manipulate the structure and properties of 2D materials and provide new opportunities for flexible nanoelectronic devices.
Original language | English |
---|---|
Article number | 1901901 |
Journal | Small |
Volume | 16 |
Issue number | 15 |
DOIs | |
State | Published - 1 Apr 2020 |
Keywords
- TaS
- electrical conductivity
- flexible
- organic intercalation
- superlattice