Abstract
Porous coordination polymers (PCPs), constructed from organic linkers and metal ions, can provide special pore environments for selective CO2 capture. Although many PCPs have been reported, a rational design for identifying PCPs that adsorb CO2 molecules with a low binding energy, high separation ability and high chemical stability remains a great challenge. Here, we propose and validate, experimentally and computationally, a new PCP, [La(BTN)DMF]·guest (PCP-1⊃guest), that has a large aromatic organic surface and a low binding energy for high CO2 separation from four-gas mixtures (CO2–N2–O2–CO) at ambient temperature. In addition, it shows good water and chemical stability; in particular, it is stable from pH = 2 to 12 at 100 °C, which is unprecedented for carboxylate-based PCPs.
Original language | English |
---|---|
Pages (from-to) | 660-666 |
Number of pages | 7 |
Journal | Chemical Science |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - 23 Dec 2013 |
Externally published | Yes |