Abstract
Carbon dots are emerging luminescent nanomaterials that have drawn considerable attention due to their abundance, environmental friendliness, and customizable optical properties. However, their susceptibility to temperature-induced vibrational exciton changes and the tendency to thermal quenching of emission have hindered their practical applications. Here, a method is reported for achieving high-temperature photoluminescence carbonized polymer dots (CPDs) through a bi-confinement approach that involves a highly cross-linked polymer network and a rigid Al2O3 matrix. As the temperature increased from 303 to 500 K, the fluorescence and phosphorescence emission intensities of CPDs@Al2O3 remained virtually unchanged, with the emission duration exceeding 150 h at 500 K. Additionally, CPDs@Al2O3 composites with different degrees of carbonization exhibit dynamic excitation-dependent photoluminescence properties, which can be patterned for multiple information encryption application. This work provides a concept for designing stable and luminous CPDs under harsh conditions, thus expanding their potential application range.
Original language | English |
---|---|
Article number | 2407811 |
Journal | Advanced Materials |
Volume | 37 |
Issue number | 5 |
DOIs | |
State | Published - 5 Feb 2025 |
Keywords
- AlO matrix
- carbon dots
- dynamic information encryption
- high-temperature photoluminescence