Phase-Pure Engineering for Efficient and Stable Formamidinium-Based Perovskite Solar Cells

Xue Dong, Lingfeng Chao, Tingting Niu, Yiyun Li, Peiyao Guo, Wei Hui, Lin Song, Zhongbin Wu, Yonghua Chen

Research output: Contribution to journalReview articlepeer-review

23 Scopus citations

Abstract

Formamidinium lead triiodide (FAPbI3) with a narrow bandgap, broad light absorption spectra, and high thermal stability has emerged as one of the promising active materials for perovskite solar cells. To date, the certified power conversion efficiency of FAPbI3-based solar cells has reached 25.7%, comparable with that of monocrystalline silicon solar cells (26.7%). However, FAPbI3 tends to form an undesirable metastable nonperovskite phase (α-FAPbI3), which is the most fatal issue for the commercialization development of FAPbI3-based perovskite solar cells. Many efforts are committed to stabilizing the α-FAPbI3 phase. In this review, the strategies involving composition engineering in A-site (including double-cation, triple-cation, quadruple-cation systems) and X-site ions (halides and pseudohalides) to stabilize FA-based perovskites are summarized. To realize higher efficiencies and avoid the increase in bandgap and phase segregation issue induced by the multicomponent elements, the corresponding strategies for preparing a pure α-FAPbI3 perovskite with various functional materials are discussed. Moreover, the perovskite crystal redissolution strategy to prepare perovskite films with high purity, precise stoichiometric ratio, high crystallinity, ideal crystal orientation, and low defect density is described for highly efficient FAPbI3-based perovskite solar cells. Finally, the perspective for future research directions toward highly reproducible and large-area FAPbI3-based photovoltaics is raised.

Original languageEnglish
Article number2200060
JournalSolar RRL
Volume6
Issue number7
DOIs
StatePublished - Jul 2022

Keywords

  • composition engineering
  • formamidinium
  • perovskite solar cells
  • pure phases

Fingerprint

Dive into the research topics of 'Phase-Pure Engineering for Efficient and Stable Formamidinium-Based Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this