Abstract
The development of cost-effective and high-performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non-noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high-spin Co 3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate-spin Co 4+ sites) in RBaCo 2 O 5.5+ δ (δ = 1/4; R = lanthanides) can produce a near-ideal HER reaction path to adsorb H 2 O and release H 2 , respectively. Experimentally, the as-synthesized (Gd 0.5 La 0.5 )BaCo 2 O 5.75 outperforms the state-of-the-art Pt/C catalyst in many aspects. The proof-of-concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near-optimal synergistic catalytic effect, which is pivotal for rational design of oxygen-containing materials.
Original language | English |
---|---|
Article number | 1900704 |
Journal | Advanced Functional Materials |
Volume | 29 |
Issue number | 20 |
DOIs | |
State | Published - 16 May 2019 |
Keywords
- active sites
- hydrogen evolution reaction
- non-noble metal perovskite oxides
- ordered oxygen vacancies
- oxygen 2p holes