Self-electrochemiluminescence of poly[9,9-bis(3‘-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9- dioctylfluorene)] and resonance energy transfer to aluminum tris(8-quinolinolate)

Long Ma, Nan Wu, Ying Liu, Xueqin Ran, Debao Xiao

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

In this paper, the electrochemiluminescence (ECL) behavior of a hole-transport polymer, poly [9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9-dio ctylfluorene)] (PFN) was examined with the purpose of finding a novel organic ECL emitter. It was found that the PFN exhibits self-electrochemiluminescence (self-ECL) without any exogenous co-reactants. Quite different from the traditional ECL, the addition of tripropyl amine (TPA) quenched the self-ECL of PFN. PFN ECL intensity reaches a peak during electrochemical oxidation process due to the superposition of self-enhanced ECL, and aggregation quenching of excited state by PFN excimer formation. Aluminum tris(8-quinolinolate) (AlQ3) doped with PFN recovers luminescence intensity with restraining quenching effect via ECL resonance energy transfer from PFN to AlQ3, giving rise to a stable luminescence signal, and hence sensory detection of nitroaromatics. The limits of detections for nitroaromatics can reach down to a level of 10−22 M. This work sets the stage for a novel organic polymer-based ECL emitter without using any toxic exogenous co-reactant, and presents a practical avenue for a prototype of realising sensory detection through signal stabilization via energy resonance energy transfer (ERET).

Original languageEnglish
Pages (from-to)826-832
Number of pages7
JournalElectrochimica Acta
Volume297
DOIs
StatePublished - 20 Feb 2019

Keywords

  • Resonance energy transfer
  • Self-electrochemiluminescence
  • Sensor
  • poly[9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene]-alt-2,7-(9,9- dioctylfluorene)

Fingerprint

Dive into the research topics of 'Self-electrochemiluminescence of poly[9,9-bis(3‘-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9- dioctylfluorene)] and resonance energy transfer to aluminum tris(8-quinolinolate)'. Together they form a unique fingerprint.

Cite this