Tailoring the Fluorescence of AIE-Active Metal-Organic Frameworks for Aqueous Sensing of Metal Ions

Qiyang Li, Xiuju Wu, Xiaoli Huang, Yangjun Deng, Nanjian Chen, Dandan Jiang, Lili Zhao, Zhihua Lin, Yonggang Zhao

Research output: Contribution to journalArticlepeer-review

87 Scopus citations

Abstract

A hydroxyl-functionalized ligand was designed for the construction of metal-organic framework (MOF) materials with the aggregation-induced emission (AIE) feature, in which the fluorescence can be deliberately tailored: quenching the fluorescence to an "off" state by the decoration with heterocyclic auxiliary ligand 4,4′-bypyridine (Bpy) in the framework as a quenching agent and triggering the enhanced fluorescence to an "on" state by removal of Bpy through the metal competitive coordination substitution strategy. Our study shows that the occurrence of exciton migration between the AIE linker and conjugated auxiliary ligand Bpy causes fluorescence quenching. Time-dependent density functional theory was employed to understand the photoinduced electron transfer process and explain the origins of fluorescence quenching. Using this strategy, the prepared MOF material can perform as a fluorescence "off-on" probe for highly sensitive detection of Al3+ in aqueous media. The hydroxyl group plays a crucial role in sensing as it can selectively chelate Al3+, which is directly related to the dissociation of nonfluorescent MOF and consequent activation of the AIE process.

Original languageEnglish
Pages (from-to)3801-3809
Number of pages9
JournalACS Applied Materials and Interfaces
Volume10
Issue number4
DOIs
StatePublished - 31 Jan 2018

Keywords

  • aggregation-induced emission
  • aluminum ion
  • fluorescence
  • metal-organic frameworks
  • sensing

Fingerprint

Dive into the research topics of 'Tailoring the Fluorescence of AIE-Active Metal-Organic Frameworks for Aqueous Sensing of Metal Ions'. Together they form a unique fingerprint.

Cite this