Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces

Qiaojuan Wang, Yating Gao, Chantsalmaa Tumurbaatar, Tungalagtamir Bold, Fei Wei, Yihu Dai, Yanhui Yang

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Carbonate-modified metal-support interfaces allow Ru/MnCO3 catalyst to exhibit over 99% selectivity, great specific activity and long-term anti-CO poisoning stability in atmospheric CO2 methanation. As a contrast, Ru/MnO catalyst with metal-oxide interfaces prefers reverse water–gas shift rather than methanation route, along with a remarkably lower activity and a less than 15% CH4 selectivity. The carbonate-modified interfaces are found to stabilize the Ru species and activate CO2 and H2 molecules. Ru-CO* species are identified as the reaction intermediates steadily formed from CO2 dissociation, which show moderate adsorption strength and high reactivity in further hydrogenation to CH4. Furthermore, carbonates of Ru/MnCO3 are found to be consumed by hydrogenation to form CH4 and replenished by exchange with CO2, which are in a dynamic equilibrium during the reaction. Modification with surface carbonates is proved as an efficient strategy to endow metal-support interfaces of Ru-based catalysts with unique catalytic functions for selective CO2 hydrogenation.

Original languageEnglish
Pages (from-to)38-46
Number of pages9
JournalJournal of Energy Chemistry
Volume64
DOIs
StatePublished - Jan 2022

Keywords

  • CO methanation
  • Carbonate
  • Metal-support interface
  • MnO
  • Ru catalyst

Fingerprint

Dive into the research topics of 'Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces'. Together they form a unique fingerprint.

Cite this