Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries

Xiaobo Zheng, Peng Li, Haojie Zhu, Guoqiang Zhao, Kun Rui, Jie Shu, Xun Xu, Xiaolin Wang, Wenping Sun, Shi Xue Dou

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Layered potassium titanates are promising anodes for sodium ion batteries, owing to their superior cycling stability, huge abundance, and environmental benignity. The structural and chemical evolution mechanisms of layered potassium titanates are still not entirely clear, however, which is a huge obstacle to their practical application. Herein, we develop layered K2Ti4O9 as a model anode of potassium titanates for SIBs and to investigate the corresponding structural and chemical evolution during cycling process. The results demonstrate that the crystal structure of K2Ti4O9 is well maintained with the incorporation of sodium ions and a zero-strain characteristic is observed upon sodium insertion/extraction process. Furthermore, about half of the potassium ions dissolve out of the K2Ti4O9 host structure, and equal amounts of sodium ions then occupy the vacancies created by the potassium ions during charging/discharging processes, eventually resulting in the formation of KNaTi4O9. Density functional theory calculations further confirm the possibility of the generation of KNaTi4O9 and indicate that the intercalated sodium ions are more likely to occupy the K2 Wyckoff sites.

Original languageEnglish
Pages (from-to)502-509
Number of pages8
JournalEnergy Storage Materials
Volume25
DOIs
StatePublished - Mar 2020
Externally publishedYes

Keywords

  • Chemical evolution
  • Potassium dissolution
  • Potassium titanates
  • Structural evolution
  • Zero-strain characteristic

Fingerprint

Dive into the research topics of 'Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries'. Together they form a unique fingerprint.

Cite this