A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations

Yide He, Xiuwen Li, Dantong Jia, Wenming Zhang, Tao Zhang, Yang Yu, Yanhua Xu, Yongjun Zhang

科研成果: 期刊稿件文章同行评审

24 引用 (Scopus)

摘要

Gabapentin (GPT) has become an emerging contaminant in aquatic environments due to its wide application in medical treatment all over the world. In this study, embryos of zebrafish were exposed to gabapentin at realistically environmental concentrations, 0.1 μg/L and 10 μg/L, so as to evaluate the ecotoxicity of this emergent contaminant. The transcriptomics profiling of deep sequencing was employed to illustrate the mechanisms. The zebrafish (Danio rerio) embryo were exposed to GPT from 12 hpf to 96 hpf resulting in 136 and 750 genes differentially expressed, respectively. The results of gene ontology (GO) analysis and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis illustrated that a large amount of differentially expressed genes (DEGs) were involved in the antioxidant system, the immune system and the nervous system. RT-qPCR was applied to validate the results of RNA-seq, which provided direct evidence that the selected genes involved in those systems mentioned above were all down-regulated. Acetylcholinesterase (AChE), lysozyme (LZM) and the content of C-reactive protein (CRP) were decreased at the end of exposure, which is consistent with the transcriptomics results. The overall results of this study demonstrate that GPT simultaneously affects various vital functionalities of zebrafish at early developmental stage, even at environmentally relevant concentrations. The present study illustrates the toxic effects of gabapentin to zebrafish at early developmental stage at environmentally relevant concentrations, and the mechanisms behind.

源语言英语
页(从-至)746-755
页数10
期刊Environmental Pollution
251
DOI
出版状态已出版 - 8月 2019

指纹

探究 'A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations' 的科研主题。它们共同构成独一无二的指纹。

引用此