TY - JOUR
T1 - Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction
AU - Zheng, Yulin
AU - Zhao, Shulin
AU - Liu, Suli
AU - Yin, Huanhuan
AU - Chen, Yu Yun
AU - Bao, Jianchun
AU - Han, Min
AU - Dai, Zhihui
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/3/11
Y1 - 2015/3/11
N2 - Exploring low-cost, high-activity, and long-durability hybrid electrocatalysts for cathodic oxygen reduction reaction (ORR) is vital to advance fuel cells technologies. In this paper, a series of graphene (G)-CuxPdy (Cu4Pd, Cu3Pd, CuPd, CuPd3, CuPd4) nanocomposites (G-CuxPdy NCPs) is obtained by assembly of CuxPdy alloy nanocrystals (NCs) with controlled component ratios on G nanosheets using the "dispersing-mixing-vaporizing solvent" strategy and used as electrocatalysts for ORR. Compared with pure CuxPdy NCs, greatly enhanced interfacial electron transfer dynamics are observed in G-CuxPdy NCPs, which show a strong correlation with the alloy compositions of the NCPs. The electrocatalytic experiments in alkaline solution reveal that the ORR activities of those G-CuxPdy NCPs are also strongly dependent on alloy components and exhibit a double-volcano feature with variations of alloy components. Among them, G-Cu3Pd NCPs possess the highest electrocatalytic activity, which is much better than some reported electrocatalysts and commercial Pd/C catalyst and close to Pt/C catalyst. By correlating the Pd 3d binding energies and the sizes of CuxPdy NCs with the mass-specific activities of G-CuxPdy NCPs and considering the interfacial electron transfer dynamics, the best catalytic activity of G-Cu3Pd NCPs may result from the unique electronic structure and the smallest size of Cu3Pd NCs as well as the strong synergistic effect between G and Cu3Pd NCs. Moreover, the durability of G-Cu3Pd NCPs is superior to that of Pt/C catalyst, indicating that they are promising cathodic electrocatalysts for using in alkaline fuel cells.
AB - Exploring low-cost, high-activity, and long-durability hybrid electrocatalysts for cathodic oxygen reduction reaction (ORR) is vital to advance fuel cells technologies. In this paper, a series of graphene (G)-CuxPdy (Cu4Pd, Cu3Pd, CuPd, CuPd3, CuPd4) nanocomposites (G-CuxPdy NCPs) is obtained by assembly of CuxPdy alloy nanocrystals (NCs) with controlled component ratios on G nanosheets using the "dispersing-mixing-vaporizing solvent" strategy and used as electrocatalysts for ORR. Compared with pure CuxPdy NCs, greatly enhanced interfacial electron transfer dynamics are observed in G-CuxPdy NCPs, which show a strong correlation with the alloy compositions of the NCPs. The electrocatalytic experiments in alkaline solution reveal that the ORR activities of those G-CuxPdy NCPs are also strongly dependent on alloy components and exhibit a double-volcano feature with variations of alloy components. Among them, G-Cu3Pd NCPs possess the highest electrocatalytic activity, which is much better than some reported electrocatalysts and commercial Pd/C catalyst and close to Pt/C catalyst. By correlating the Pd 3d binding energies and the sizes of CuxPdy NCs with the mass-specific activities of G-CuxPdy NCPs and considering the interfacial electron transfer dynamics, the best catalytic activity of G-Cu3Pd NCPs may result from the unique electronic structure and the smallest size of Cu3Pd NCs as well as the strong synergistic effect between G and Cu3Pd NCs. Moreover, the durability of G-Cu3Pd NCPs is superior to that of Pt/C catalyst, indicating that they are promising cathodic electrocatalysts for using in alkaline fuel cells.
KW - assembly
KW - bimetallic nanocrystals
KW - electrocatalysis
KW - graphene
KW - nanocomposites
KW - oxygen reduction reaction
UR - http://www.scopus.com/inward/record.url?scp=84924622821&partnerID=8YFLogxK
U2 - 10.1021/acsami.5b01541
DO - 10.1021/acsami.5b01541
M3 - 文章
AN - SCOPUS:84924622821
SN - 1944-8244
VL - 7
SP - 5347
EP - 5357
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 9
ER -