Donor acceptor complexes of noble gases

Leonie Anna Mück, Alexey Y. Timoshkin, Moritz Von Hopffgarten, Gernot Frenking

科研成果: 期刊稿件文章同行评审

76 引用 (Scopus)

摘要

Donor-acceptor (DA) complexes of noble gases (Ng) of the general type A - Ng - D(a = Lewis acid, D = Lewis base) have been theoretically studied using ab initio and DFT methods. Chemical bonding in these compounds is realized via a 3-center 4-electron bond, which is formed by a lone pair of the noble gas, a lone pair of the donor molecule and a vacant orbital of the acceptor molecule. Detailed bonding analysis of the model compounds F3Al-Ng-NH 3 reveals that Ng-ammonia interaction is repülsive due to Pauli repulsion. Bonding interaction between Ng and N is mostly electrostatic. In contrast, strong orbital interactions are responsible for the attractive interactions between Ng and AlF3. Due to the repulsive interactions with the donor molecule and a sizable reorganization energy of the acceptor molecule, optimization attempts of the A ← Ng ← D compounds, which feature individual donor and acceptor molecules, always lead to the dissociation of the complex and eventual formation of free Ng. To overcome this obstacle, the concept of a rigid C3v symmetric cryptand-type ligand, which features spacially separated pyramidalized donor and acceptor fragments, is introduced. Such "push-pull" ligands are predicted to exothermically form complexes with noble gases. These are the first examples of the thermodynamically stable Ar and Kr compounds. Application of the push-pull cryptand ligands feat ring multiple (two and three) donor-acceptor induced chemical bonds is expected to yield stable complexes with virtually any electron-rich element in the periodic table.

源语言英语
页(从-至)3942-3949
页数8
期刊Journal of the American Chemical Society
131
11
DOI
出版状态已出版 - 25 3月 2009
已对外发布

指纹

探究 'Donor acceptor complexes of noble gases' 的科研主题。它们共同构成独一无二的指纹。

引用此