Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2

Nuo Xu, Zirui Yuan, Zhihong Ma, Xinli Guo, Yunfeng Zhu, Yongjin Zou, Yao Zhang

科研成果: 期刊稿件文章同行评审

22 引用 (Scopus)

摘要

MgH2 with a large hydrogen capacity is regarded as a promising hydrogen storage material. However, it still suffers from high thermal stability and sluggish kinetics. In this paper, highly dispersed nano-Ni has been successfully prepared by using the polyol reduction method with an average size of 2.14 nm, which significantly improves the de/rehydrogenation properties of MgH2. The MgH2—10wt% nano-Ni sample starts releasing H2 at 497 K, and roughly 6.2wt% H2 has been liberated at 583 K. The rehydrogenation kinetics of the sample are also greatly improved, and the adsorption capacity reaches 5.3wt% H2 in 1000 s at 482 K and under 3 MPa hydrogen pressure. Moreover, the activation energies of de/rehydrogenation of the MgH2—10wt% nano-Ni sample are reduced to (88 ± 2) and (87 ± 1) kJ·mol−1, respectively. In addition, the thermal stability of the MgH2—10wt% nano-Ni system is reduced by 5.5 kJ per mol H2 from that of pristine MgH2. This finding indicates that nano-Ni significantly improves both the thermodynamic and kinetic performances of the de/rehydrogenation of MgH2, serving as a bi-functional additive of both reagent and catalyst.

源语言英语
页(从-至)54-62
页数9
期刊International Journal of Minerals, Metallurgy and Materials
30
1
DOI
出版状态已出版 - 1月 2023

指纹

探究 'Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2' 的科研主题。它们共同构成独一无二的指纹。

引用此