TY - JOUR
T1 - Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust
AU - Yu, Yuan
AU - Li, Yunhao
AU - Zhang, Qingwu
AU - Ni, Weishun
AU - Jiang, Juncheng
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2018/2/15
Y1 - 2018/2/15
N2 - The inerting effect of crystalline II type Ammonium Polyphosphate (APP-II) on explosion characteristics of micron-size Acrylates Copolymer (ACR) powders was experimentally studied. The inerting mechanism was analysed by combining thermogravimetry (TG) and differential scanning calorimetry (DSC) tests. The results indicated that the maximum explosion pressure (Pmax) and explosion index (Kst) was 10.4 bar and 416 bar m/s, respectively for ACR powders. The minimum explosion concentration (MEC) of ACR powders ranged from 20 to 30 g/m3, and the experimental minimum ignition energy (MIE) of the ACR dust cloud was 10 mJ. Therefore, ACR dust was determined to be severely combustible dust. There existed a minimum inerting concentration (MIC), and the explosion of ACR powders can be inerted completely by 80 wt% APP-II. Furthermore, 30 and 40 wt% APP-II had a significant inerting effect on the MIE of ACR dust. According to TG and DSC tests, thermal stability of ACR would be augmented by the introduction of APP-II. The addition of APP-II triggered lower maximum mass loss rate (MMLR), higher temperature corresponding to mass loss of 90% (T0.1), chars yield, and endothermic peaks. Consequently, the ACR dust explosion was inerted by the chemical interaction of ACR/APP-II mixtures and endothermic decomposition of APP-II.
AB - The inerting effect of crystalline II type Ammonium Polyphosphate (APP-II) on explosion characteristics of micron-size Acrylates Copolymer (ACR) powders was experimentally studied. The inerting mechanism was analysed by combining thermogravimetry (TG) and differential scanning calorimetry (DSC) tests. The results indicated that the maximum explosion pressure (Pmax) and explosion index (Kst) was 10.4 bar and 416 bar m/s, respectively for ACR powders. The minimum explosion concentration (MEC) of ACR powders ranged from 20 to 30 g/m3, and the experimental minimum ignition energy (MIE) of the ACR dust cloud was 10 mJ. Therefore, ACR dust was determined to be severely combustible dust. There existed a minimum inerting concentration (MIC), and the explosion of ACR powders can be inerted completely by 80 wt% APP-II. Furthermore, 30 and 40 wt% APP-II had a significant inerting effect on the MIE of ACR dust. According to TG and DSC tests, thermal stability of ACR would be augmented by the introduction of APP-II. The addition of APP-II triggered lower maximum mass loss rate (MMLR), higher temperature corresponding to mass loss of 90% (T0.1), chars yield, and endothermic peaks. Consequently, the ACR dust explosion was inerted by the chemical interaction of ACR/APP-II mixtures and endothermic decomposition of APP-II.
KW - Chemical interaction
KW - Crystalline II type Ammonium Polyphosphate
KW - Inerting effect
KW - Inerting mechanism
KW - Micron-size Acrylates Copolymer
UR - http://www.scopus.com/inward/record.url?scp=85032668342&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2017.10.060
DO - 10.1016/j.jhazmat.2017.10.060
M3 - 文章
C2 - 29102638
AN - SCOPUS:85032668342
SN - 0304-3894
VL - 344
SP - 558
EP - 565
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -