Experimental study on the smoke temperature evolution in a polyethylene (PE)-lined compartment on fire

Junhui Gong, Di Wang, Long Shi, Xuanya Liu, Ye Chen, Guomin Zhang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Smoke temperature evolution in the upper layer of compartment fire, which is critical for the prediction of potential flashover, was experimentally investigated in a real building. Three-millimeter polyethylene (PE) slabs attached on the internal walls were employed as the lining material to address the effect of the melting and combustion of the lining material on the smoke temperature. A corner gasoline pool fire was utilized as the fire source. Two thermocouple trees, mounted vertically at the center and the open door, and a high-definition camera were utilized to record the smoke temperature history and experimental video. Meanwhile, some furniture was loaded to study its enhancement feature on fire intensity. Heat release rates (HRRs) at different stages were analyzed based on MQH method (McCaffrey, Quintiere and Harkleroad) and pool fire theory. Smoke temperature was estimated through an improved MQH correlation considering the melting of the PE slabs and an empirical model, BFD curve (Barnett in Fire Saf J 37: 437–463, 2002) combined. The results show that both the maximum HRR and smoke temperature, 925.91 kW and 491.7 °C, are lower than the critical values of flashover. The PE lining greatly intensifies the fire power and the resulting smoke temperature compared with the ones in noncombustible wall scenario. Combustion of the molten PE flowing down from the walls would lead to a secondary peak in smoke temperature curve, which is rarely considered in previous work.

源语言英语
页(从-至)1907-1917
页数11
期刊Journal of Thermal Analysis and Calorimetry
140
4
DOI
出版状态已出版 - 1 5月 2020

指纹

探究 'Experimental study on the smoke temperature evolution in a polyethylene (PE)-lined compartment on fire' 的科研主题。它们共同构成独一无二的指纹。

引用此