Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries

Linlin Li, Shengjie Peng, Jin Wang, Yan Ling Cheah, Peifen Teh, Yahwen Ko, Chuiling Wong, Madhavi Srinivasan

科研成果: 期刊稿件文章同行评审

75 引用 (Scopus)

摘要

CaSnO3 nanotubes are successfully prepared by a single spinneret electrospinning technique. The characterized results indicate that the well-crystallized one-dimensional (1D) CaSnO3 nanostructures consist of about 10 nm nanocrystals, which interconnect to form nanofibers, nanotubes, and ruptured nanobelts after calcination. The diameter and wall thickness of CaSnO3 nanotubes are about 180 and 40 nm, respectively. It is demonstrated that CaSnO3 nanofiber, nanotubes, and ruptured nanobelts can be obtained by adjusting the calcination temperature in the range of 600-800 °C. The effect of calcination temperature on the morphologies of electrospun 1D CaSnO3 nanostructures and the formation mechanism leading to 1D CaSnO3 nanostructures are investigated. As anodes for lithium ion batteries, CaSnO3 nanotubes exhibit superior electrochemical performance and deliver 1168 mAh g-1 of initial discharge capacity and 565 mAh g-1 of discharge capacity up to the 50th cycle, which is ascribed to the hollow interior structure of 1D CaSnO 3 nanotubes. Such porous nanotubular structure provides both buffer spaces for volume change during charging/discharging and rapid lithium ion transport, resulting in excellent electrochemical performance.

源语言英语
页(从-至)6005-6012
页数8
期刊ACS Applied Materials and Interfaces
4
11
DOI
出版状态已出版 - 28 11月 2012
已对外发布

指纹

探究 'Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此