摘要
Purification and recovery of polar organic solvents such as dimethylformamide (DMF) with high chemical separation speed and low energy cost nanofiltration membranes has been widely investigated, while it is still a difficult challenge that high permeability of solvents and rejection of solutes are achieved simultaneously. In this study, a novel organic solvent nanofiltration (OSN) membranes was obtained via coating a thin selective graphene oxide (GO) layer on top of the polyimide porous substrate (PI) which was cross-linked to improve the stability in polar solvents. The resultant GO/cross-linked PI (GO/CLPI) composite membranes feature remarkable sieving capability of >94% for RBss molecules (1018 Da), accompanying high pure solvent permeability of 11.1 L h−1 m−2 bar−1, 4.9 L h−1 m−2 bar−1 and 1.0 L h−1 m−2 bar−1 for water, IPA and DMF, respectively. Different from conventional method of characterization, low field nuclear magnetic resonance technology (LF-NMR) was utilized to confirm that the GO/CLPI membrane shows a higher adsorption capacity for IPA than DMF. This newly technique can be effectively utilized to evaluate the affinity between organic solvents and the surface of membranes.
源语言 | 英语 |
---|---|
页(从-至) | 182-189 |
页数 | 8 |
期刊 | Chemical Engineering Research and Design |
卷 | 146 |
DOI | |
出版状态 | 已出版 - 6月 2019 |