Highly efficient preparation of Ce0.8Sm0.2O2-δ–SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach

Zhicheng Zhang, Ke Ning, Zhi Xu, Qiankun Zheng, Jingkun Tan, Zhengkun Liu, Zhentao Wu, Guangru Zhang, Wanqin Jin

科研成果: 期刊稿件文章同行评审

25 引用 (Scopus)

摘要

Fabricating dual-phase hollow-fiber membranes via a one-step thermal processing (OSTP) approach is challenging, because of complex sintering kinetics and the subsequent impacts on membrane morphology, phase stability, and permeation properties. In this study, we have demonstrated that Ce0.8Sm0.2O2-δ-SrCo0.9Nb0.1O3-δ (SDC-SCN) four-channel hollow fiber membrane can be manufactured via a single high-temperature sintering process, by using metal oxides and carbonates directly as membrane materials (sources of metal ions). It has been found that use of a low ramping rate reduces grain sizes, increases grain and forming cobalt oxide nanoparticles, a key step to promoting surface exchange process followed by enhancing oxygen permeation. While the grain boundary interface region can be limited to approximately 20–30 nm. At 1173 K oxygen permeation of the SDC-SCN four-channel hollow fiber membrane was measured at approximately 1.2 mL cm−2·min−1 using helium as the sweep gas. Meanwhile, the dual-phase membrane shows a good tolerance to carbon dioxide, with the oxygen permeation flux fully recovered after long-term exposure to carbon dioxide (more than 100 h). This will enable further application of the OSTP approach for preparing dual-phase multi-channel hollow fiber membranes for applications of oxyfuel combustion, catalytic membrane reactors and carbon dioxide capture.

源语言英语
文章编号118752
期刊Journal of Membrane Science
620
DOI
出版状态已出版 - 15 2月 2021

指纹

探究 'Highly efficient preparation of Ce0.8Sm0.2O2-δ–SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach' 的科研主题。它们共同构成独一无二的指纹。

引用此