Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells

Yufei Song, Haidong Li, Meigui Xu, Guangming Yang, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao

科研成果: 期刊稿件文章同行评审

106 引用 (Scopus)

摘要

Direct ammonia solid oxide fuel cell (DA-SOFC) is superior to low-temperature direct ammonia fuel cell using anion exchange membrane because of much improved anode reaction kinetics at elevated temperature. However, significant performance degradation due to severe sintering of conventional nickel cermet anode under operating conditions is a big challenge for realizing its practical use. Herein, a high-performance anode based on La0.55Sr0.30TiO3−δ (LST) perovskite substrate with its surface decorated with in situ exsolved and strongly coupled NiCo alloy nanoparticles (NPs) is designed and fabricated for DA-SOFCs, exhibiting superior catalytic activity for NH3 decomposition reaction due to balanced NH3 adsorption and N2 desorption processes. An electrolyte-supported single cell with infiltrated NiCo/LST on Sm0.2Ce0.8O1.9 scaffold anode delivers a maximum power density of 361 mW cm−2 at 800 °C in NH3 fuel, superior to similar SOFCs with Ni or Co NP-decorated LST based anodes (161 and 98 mW cm−2). Furthermore, the SOFC with this newly developed anode displays favorable operational stability without obvious performance degradation at 700 °C for a test period of ≈120 h, attributed to its high antisintering capability. This study provides some strategies to develop highly active, stable, and antisintering perovskite-based nanocomposite for DA-SOFCs, facilitating the practical use of this technology.

源语言英语
文章编号2001859
期刊Small
16
28
DOI
出版状态已出版 - 1 7月 2020

指纹

探究 'Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells' 的科研主题。它们共同构成独一无二的指纹。

引用此