摘要
A Zn-based metal-organic framework (MOF)/porous coordination polymer (PCP), (EMIM)[Zn(SIP)] (1) (SIP3- = 5-sulfoisophthalate, EMIM+ = 1-ethyl-3-methylimidazolium), was synthesized using the ionothermal reaction. The Zn2+ ion adopts distorted square pyramid coordination geometry with five oxygen atoms from three carboxylates and one sulfo group. One of two carboxylates in SIP3- serves as a μ2-bridge ligand to link two Zn2+ ions and form the dinuclear SBU, and such SBUs are connected by SIP3- ligands to build the three-dimensional framework with rutile (rtl) topology. The cations from the ion-liquid fill the channels. This MOF/PCP shows two-step dielectric anomalies together with two-step dielectric relaxations; the variable-temperature single-crystal structure analyses disclosed the dielectric anomaly occurring at ca. 280 K is caused by an isostructural phase transition. Another dielectric anomaly is related to the dynamic disorder of the cations in the channels. Electric modulus, conductance, and variable-temperature solid-state 13C CP/MAS NMR spectra analyses revealed that two-step dielectric relaxations result from the dynamic motion of the cations as well as the direct-current conduction and electrode effect, respectively.
源语言 | 英语 |
---|---|
页(从-至) | 11716-11726 |
页数 | 11 |
期刊 | Inorganic Chemistry |
卷 | 55 |
期 | 22 |
DOI | |
出版状态 | 已出版 - 21 11月 2016 |