TY - JOUR
T1 - Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities
AU - Xu, Yanqiu
AU - Hu, Xiulan
AU - Zhu, Haikui
AU - Zhang, Jianbo
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Bismuth oxychloride (BiOCl) with tunable structures and morphologies were successfully synthesized through a facile solvothermal method in water–methanol solution. Size and shape of BiOCl could be effectively tuned by adjusting the volume fraction of water in water–methanol solution. With the increasing water content, BiOCl grows along the c-axis [001] orientation, and the exposure of {001} facets also increases. In the case of 10 % water, dispersed BiOCl nanoplates with the size of 200 nm and the thickness of 40 nm were obtained instead of microspheres as obtained in pure methanol. These BiOCl nanoplates showed higher photocatalytic activity toward methyl orange (MO) than BiOCl microspheres and higher degradation activity for rhodamine B (RhB) than P25. The excellent photocatalytic activity of BiOCl nanoplates could be mainly attributed to its effective separation of electron–hole pairs, increased exposure of {001} facets, and reductions in size and thickness. And BiOCl nanoplates prepared with 15 % water exhibit promising oxygen reduction reaction performance in alkaline electrolyte (KOH) due to the increased exposure of {001} facets.
AB - Bismuth oxychloride (BiOCl) with tunable structures and morphologies were successfully synthesized through a facile solvothermal method in water–methanol solution. Size and shape of BiOCl could be effectively tuned by adjusting the volume fraction of water in water–methanol solution. With the increasing water content, BiOCl grows along the c-axis [001] orientation, and the exposure of {001} facets also increases. In the case of 10 % water, dispersed BiOCl nanoplates with the size of 200 nm and the thickness of 40 nm were obtained instead of microspheres as obtained in pure methanol. These BiOCl nanoplates showed higher photocatalytic activity toward methyl orange (MO) than BiOCl microspheres and higher degradation activity for rhodamine B (RhB) than P25. The excellent photocatalytic activity of BiOCl nanoplates could be mainly attributed to its effective separation of electron–hole pairs, increased exposure of {001} facets, and reductions in size and thickness. And BiOCl nanoplates prepared with 15 % water exhibit promising oxygen reduction reaction performance in alkaline electrolyte (KOH) due to the increased exposure of {001} facets.
UR - http://www.scopus.com/inward/record.url?scp=84961286246&partnerID=8YFLogxK
U2 - 10.1007/s10853-016-9745-6
DO - 10.1007/s10853-016-9745-6
M3 - 文章
AN - SCOPUS:84961286246
SN - 0022-2461
VL - 51
SP - 4342
EP - 4348
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 9
ER -